Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synthesis of cobalt oxide nanoparticles using Cirsium vulgare leaves extract and evaluation of electrocatalytic effects on oxidation of l-cysteine

  • 6 Accesses

Abstract

In this present study, cobalt oxide nanoparticles (Co3O4 NPs) were synthesized using Cirsium vulgare leaves extract and characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). These methods confirmed the formation of Co3O4 NPs, and the microscopic technique confirmed the size of the Co3O4 NPs is about 20 nm. Also, a novel modified electrode for determination of l-cysteine was described by carbon paste electrode modified with Co3O4 NPs (CPE/Co3O4 NPs). The presence of Co3O4 NPs markedly enhances the electrocatalytic activity for determination of l-cysteine. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of l-cysteine in the range 0.20–75 μM by the amperometric method. The detection limit (S/N = 3) was also estimated to be 0.07 μM. This modified electrode was a simple, rapid, and effective sensor, and it was successfully applied to determine of l-cysteine in real samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

  2. 2.

    DeSimone JM (2002) Practical approaches to green solvents. Science 297:799–803

  3. 3.

    Li N, Li Q, Yuan M, Guo X, Zheng S, Pang H (2019) Synthesis of Co0.5Mn0.1Ni0.4C2O4·n H2O micropolyhedrons: multimetal synergy for high-performance glucose oxidation catalysis. Chem Asian J 14:2259–2265

  4. 4.

    Li Q, Zheng S, Shao Z, Zheng M, Pang H (2018) Ultrathin nanosheet Ni-metal organic framework assemblies for high-efficiency ascorbic acid electrocatalysis. Chem Electrochem 5:3859–3865

  5. 5.

    Zheng S, Li B, Tang Y, Li Q, Xue H, Pang H (2018) Ultrathin nanosheet-assembled [Ni3(OH)2(PTA)2(H2O)4]·2H2O hierarchical flowers for high-performance electrocatalysis of glucose oxidation reactions. Nanoscale 10:13270–13276

  6. 6.

    Shu Y, Li B, Chen J, Xu Q, Pang H, Hu X (2018) Facile synthesis of ultrathin nickel–cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation. ACS Appl Mater Interfaces 10:2360–2367

  7. 7.

    Villagra E, Bedioui F, Nyokong T, Canales JC, Sancy M, Paez MA, Costamagna J, Zagal JH (2008) Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose. Electrochim Acta 53:4883–4888

  8. 8.

    Vidotti M, Silva MR, Salvador RP, Cordoba de Torresi SI, Dall’Antonia LH (2008) Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochim Acta 53:4030–4034

  9. 9.

    Ding CF, Zhao F, Zhang ML, Zhang SS (2008) Hybridization biosensor using 2, 9-dimethyl-1 10-phenantroline cobalt as electrochemical indicator for detection of hepatitis B virus DNA. Bioelectrochem 72:28–33

  10. 10.

    Arguello J, Magosso HA, Landers R, Gushikem Y (2008) Electrocatalytic applications of a sol–gel derived cobalt phthalocyanine–dispersed carbon–ceramic electrode. J Electroanal Chem 617:45–52

  11. 11.

    Duan H, Lin X y, Liu G, Xu L, Li F (2006) Tuning size and catalytic activity of nano-clusters of cobalt oxide. J Chem Sci 118:179–184

  12. 12.

    Manigandan R, Giribabu K, Suresh R, VijayalakshmI L, Stephen A, Narayanan V (2013) Cobalt oxide nanoparticles: characterization and its electrocatalytic activity towards nitrobenzene. Chem Sci Trans 2:47–50

  13. 13.

    Farhadi S, Safabakhsh J, Zaringhadam P (2013) Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J Nanostructure Chem 69(3):1–9

  14. 14.

    Yang HT, Su YK, Shen CM, Yang TZ, Gao HJ (2004) Synthesis and magnetic properties of ε-cobalt nanoparticles. Surf Interface Anal 36:155–160

  15. 15.

    Osorio-Cantillo C, Santiago-Miranda AN, Perales-Perez O, Xin Y (2012) Size- and phase- controlled synthesis of cobalt nanoparticles for potential biomedical applications. J Appl Phys 111. https://doi.org/10.1063/1.3676620

  16. 16.

    Papi E, Rossi F, Raspanti M, Dalle-Donne I, Colomb G, Milzani A, Bernardini G, Gornati R (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

  17. 17.

    Raman V, Suresh S, Savarimuthu PA, Raman T, Tsatsakis AM, Golokhvast KS (2016) Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Exp Ther Med 11:553–560

  18. 18.

    Liu X, Qiu G, Li X (2005) Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes. Nanotechnol 16:3035–3040

  19. 19.

    Salavati-Niasari M, Mir N, Davar FJ (2009) Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. J Phys Chem Solids 70:847–852

  20. 20.

    Dong C, Xiao X, Chen G, Guan H, Wang Y (2014) Hydrothermal synthesis of Co3O4 nanorods on nickel foil. Mater Lett 123:187–190

  21. 21.

    Thota S, Kumar A, Kumar J (2009) Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol–gel derived oxalates. Mater Sci Eng B 164:30–37

  22. 22.

    Makhlouf MT, Abu-Zied BM, Mansour TH (2013) Effect of calcination temperature on the H2O2 decomposition activity of nano-crystalline Co3O4 prepared by combustion method. Appl Surf Sci 274:45–52

  23. 23.

    Zhang P, Hu G, Bao S, Guo J, Lei C, Cai C, Jia DZ, Wang R (2012) One step microwave synthesis and magnetic properties of Co3O4 octahedrons. Mater Lett 83:195–197

  24. 24.

    Yogeswari R, Sikha B, Akshya Kumar O, Nayak PL (2012) Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J Microbiol Antimicrob 4:103–109

  25. 25.

    Farooqui MA, Chauhan PS, Krishnamoorthy P, Shai J (2010) Extraction of silver nanoparticles from the leaf extracts of clerodendrum inerme. Dig J Nanomate Biostruct 5:43–49

  26. 26.

    Talha Khalil A, Ovais M, Ullah I, Ali M, Khan Shinwari Z, Maaza M (2017) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Arab J Chem 10:186–201

  27. 27.

    Hammerich O, Ulstrup J (2008) Bioinorganic electrochemistry. Springer, Netherlands

  28. 28.

    Palermo C, Joyce JA (2007) Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 29:22–28

  29. 29.

    Maleki N, Safavi A, Sedaghati F, Tajabadi F (2007) Efficient electrocatalysis of l-cysteine oxidation at carbon ionic liquid electrode. Anal Biochem 369:149–153

  30. 30.

    Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem 73:5972–5978

  31. 31.

    Wei X, Qi L, Tan J, Liu R, Wang F (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671:80–84

  32. 32.

    Chen Z, Luo S, Liu C, Cai Q (2009) Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles. Anal Bioanal Chem 395:489–494

  33. 33.

    Possari R, Carvalhal RF, Mendes RK, Kubota LT (2006) Electrochemical detection of cysteine in a flow system based on reductive desorption of thiols from gold. Anal Chim Acta 575:172–179

  34. 34.

    Rezaei B, Mokhtari A (2007) A simple and rapid flow injection chemiluminescence determination of cysteine with Ru(phen)32+–Ce(IV) system. Spectrochim Acta A 66:359–363

  35. 35.

    Kusmierek K, Glowacki R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem 385:855–860

  36. 36.

    Nolin TD, McMenamin ME, Himmelfarb J (2007) Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress. J Chromatogr B 852:554–561

  37. 37.

    Nie LH, Ma HM, Sun M, Li XH, Su MH, Liang SC (2003) Direct chemiluminescence determination of cysteine in human serum using quinine-Ce(IV) system. Talanta 59:959–964

  38. 38.

    Wang H, Wang WS, Zhang HS (2001) Spectrofluorimetic determination of cysteine based on the fluorescence inhibition of Cd(II)-8-hydroxyquinoline-5-sulphonic acid complex by cysteine. Talanta 53:1015–1019

  39. 39.

    Majidi MR, Asadpour-Zeynali K, Hafezi B (2010) Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Microchim Acta 169:283–288

  40. 40.

    Abbaspour A, Ghaffarinejad A (2008) Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim Acta 53:6643–6650

  41. 41.

    Sattarahmady N, Heli H (2011) An electrocatalytic transducer for l-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core–shell structure. Anal Biochem 409:74–80

  42. 42.

    Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

  43. 43.

    Raoof JB, Ojani R, Beitollahi H (2007) L-cysteine voltammetry at a carbon paste electrode bulk-modified with Ferrocenedicarboxylic acid. Talanta 19:1822–1830

  44. 44.

    Tabeshnia M, Rashvandavei M, Amini R, Pashaee F (2010) Electrocatalytic oxidation of some amino acids on a cobalt hydroxide nanoparticles modified glassy carbon electrod. J Electroanal Chem 647:181–186

  45. 45.

    Nekrassova O, Lawrence NS, Compton RG (2004) Selective electroanalytical assay for cysteine at a boron doped diamond electrode. Electroanalysis 16:1285–1291

  46. 46.

    Nekrassova O, Lawrence NS, Compton RG (2003) Analytical determination ofhomocysteine. Talanta 60:1085–1095

  47. 47.

    Ojani R, Raoof JB, Norouzi B (2010) Carbon paste electrode modified by cobalt ions dispersed into poly (N-methylaniline) preparing in the presence of SDS: application inelectrocatalytic oxidation of hydrogen peroxide. J Solid State Electrochem 14:621–631

  48. 48.

    Norouzi B, Gorji A (2019) Preparation of cobalt-poly (naphthylamine)/sodium dodecylsulfate-modified carbon paste electrode as a sensitive sensor for L-cysteine. Ionics 25:797–807

  49. 49.

    Ojani R, Raoof JB, Norouzi B (2011) Performance of glucose electrooxidation on Ni–Co composition dispersed on the poly (isonicotinic acid)(SDS) film. J Solid State Electrochem 15:1139–1147

  50. 50.

    Norouzi B, Norouzi M (2012) Methanol electrooxidation on novel modified carbon paste electrodes with supported poly(isonicotinic acid) (sodium dodecyl sulfate)/Ni-Co electrocatalysts. J Solid State Electrochem 16:3003–3010

  51. 51.

    Salavati-Niasari M, Davar F, Mazaheri M, Shaterian M (2008) Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition. J Magn Magn Mater 320:575–578

  52. 52.

    Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548

  53. 53.

    Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38

  54. 54.

    Bard AJ, Faulkner LR (2001) J Electrochemical methods, fundamentals and applications. Wiley, New York

  55. 55.

    Hernandez-Ibanez N, Sanjuan I, Montiel MA, Foster CW, Banks CE, Iniesta J (2016) l-cysteine determination in embryo cell culture media using Co (II)-phthalocyanine modified disposable screen-printed electrodes. J Electroanal Chem 780:303–310

  56. 56.

    Teixeira MFS, Dockal ER, Cavalheiro ETG (2005) Sensor for cysteine based on oxovanadium(IV) complex of Salen modified carbon paste electrode. Sensors Actuators B 106:619–625

  57. 57.

    Amini MK, Khorasani JH, Khaloo SS, Tangestaninejad S (2003) Cobalt(II) salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine. Anal Biochem 320:32–38

  58. 58.

    Kohilarani K, Chen SM, Devasenathipathy R, Wang SF (2017) A simple fabrication of Co(II)-phthalocyamine modified disposable activated screen printed carbon electrode for the effective determination of L-cysteine. Int J Electrochem Sci 12:1550–1560

  59. 59.

    Nezamzadeh-Ejhieh A, Hashemi HS (2012) Voltammetric determination of cysteine using carbon paste electrode modified with Co(II)-Y zeolite. Talanta 88:201–208

  60. 60.

    Xu H, Xiao J, Liu B, Grivea S, Bedioui F (2015) Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 66:38–44

Download references

Author information

Correspondence to Banafsheh Norouzi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fallahi, M., Norouzi, B. Synthesis of cobalt oxide nanoparticles using Cirsium vulgare leaves extract and evaluation of electrocatalytic effects on oxidation of l-cysteine. Ionics (2020). https://doi.org/10.1007/s11581-020-03451-6

Download citation

Keywords

  • Cobalt oxide
  • Nanoparticles
  • l-cysteine
  • Extract
  • Cirsium vulgare