pp 1–9 | Cite as

Thermodynamic and experimental analysis of Ni-Co-Mn carbonate precursor synthesis for Li-rich cathode materials

  • Shiyi Deng
  • Yongxiang Chen
  • Georgios Kolliopoulos
  • Vladimiros G. Papangelakis
  • Yunjiao LiEmail author
Original Paper


The Eh-pH diagrams for Ni-Co-Mn-CO3-H2O system at various temperatures and ion concentrations are simulated via OLI studio based on the fundamentals of thermodynamic equilibrium. A co-existence area for NiCO3, CoCO3, and MnCO3 is observed visually from the Eh-pH diagrams, which thermodynamically proves the stability of these species in aqueous solutions, and the possibility of co-precipitating polymetallic carbonate. The simulation results also demonstrate that a higher temperature and/or a more dilute solution are not in favor of the co-precipitation. With the predicted pH ranges from the Eh-pH diagrams, a confirmative experiment was conducted to synthesize Ni0.13Co0.13Mn0.54(CO3)0.8, the precursor for preparing Li1.2Ni0.13Co0.13Mn0.54O2, which is a promising cathode material for next-generation LIBs. The physical properties of both materials are characterized in detail, and the electrochemical performance for the final cathode material was tested. The results show that Ni2+, Co2+, and Mn2+ ions in solution are homogeneously co-precipitated in the form of polymetallic carbonate. The Li1.2Ni0.13Co0.13Mn0.54O2 material obtained from the carbonate precursor has a typical structure of Li- and Mn-rich cathodes and yields an initial discharge capacity of 296.0 mAh g−1 at 0.1 C and 188.1 mAh g−1 after 100 cycles at 1 C rate. It was verified that the OLI-assisted Eh-pH simulation is consistent with the experimental measurements.


Eh-pH diagrams Li-ion batteries Carbonate precursor Li-rich material 



Mr. S. Deng is thankful for the support from Central South University for the CSU Special Scholarship for Study Abroad at the University of Toronto. OLI Systems Inc. is also acknowledged for providing access to the OLI software at the UofT.

Funding information

This study received financial support from the Government of Chongzuo, Guangxi Zhuang Autonomous Region, China (GC Joint Special Fund No. FA2019015) and Science and Technology Department of Guangxi Zhuang Autonomous Region, China (Guangxi Special Fund for Scientific Center and Talent Resources, No. AD18281073).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11581_2020_3439_MOESM1_ESM.doc (192 kb)
ESM 1 (DOC 192 kb)


  1. 1.
    Shang G, Tang Y, Lai Y et al (2019) Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage. J Power Sources 423:246–254. CrossRefGoogle Scholar
  2. 2.
    Chen D, Mahmoud MA, Wang J-H, Waller GH, Zhao B, Qu C, el-Sayed MA, Liu M (2019) Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett 19:2037–2043. CrossRefPubMedGoogle Scholar
  3. 3.
    Schipper F, Nayak P, Erickson E et al (2017) Study of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics 5:32. CrossRefGoogle Scholar
  4. 4.
    Wu Y (2015) Lithium-ion batteries: fundamentals and applications. CRC PressGoogle Scholar
  5. 5.
    Zhao L, Wu Q, Wu J (2018) Improving rate performance of cathode material Li1.2Mn0.54Co0.13Ni0.13O2 via niobium doping. J Solid State Electrochem 22:2141–2148. CrossRefGoogle Scholar
  6. 6.
    Deng S, Li Y, Dai Q et al (2019) Structure and primary particle double-tuning by trace nano-TiO2 for a high-performance LiNiO2 cathode material. Sustain Energy Fuels 3:3234–3243. CrossRefGoogle Scholar
  7. 7.
    Xiao B, Sun X (2018) Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv Energy Mater 8:1802057. CrossRefGoogle Scholar
  8. 8.
    Chen JJ, Li ZD, Xiang HF et al (2015) Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion batteries. RSC Adv 5:3031–3038. CrossRefGoogle Scholar
  9. 9.
    Xiang Y, Yin Z, Li X (2014) Synthesis and characterization of manganese-, nickel-, and cobalt-containing carbonate precursors for high capacity Li-ion battery cathodes. J Solid State Electrochem 18:2123–2129. CrossRefGoogle Scholar
  10. 10.
    Zhang H, Yang T, Han Y et al (2017) Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with the fast lithium-ion conductor Li-La-Ti-O. J Power Sources 364:272–279. CrossRefGoogle Scholar
  11. 11.
    Li L, Zhang X, Chen R et al (2014) Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J Power Sources 249:28–34. CrossRefGoogle Scholar
  12. 12.
    Du Z, Peng W, Wang Z et al (2018) Improving the electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by LiF coating. Ionics (Kiel) 24:3717–3724. CrossRefGoogle Scholar
  13. 13.
    Liu H, Chen C, Du C et al (2015) Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A 3:2634–2641. CrossRefGoogle Scholar
  14. 14.
    Pechen LS, Makhonina EV, Rumyantsev AM, Koshtyal YM, Pervov VS, Eremenko IL (2018) Effect of the synthesis method on the functional properties of lithium-rich complex oxides Li1.2Mn0.54Ni0.13Co0.13O2. Russ J Inorg Chem 63:1534–1540. CrossRefGoogle Scholar
  15. 15.
    He W, Liu J, Sun W et al (2018) Coprecipitation-gel synthesis and degradation mechanism of octahedral Li1.2Mn0.54Ni0.13Co0.13O2 as high-performance cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 10:23018–23028. CrossRefPubMedGoogle Scholar
  16. 16.
    Jin X, Xu Q, Liu X, Yuan X, Liu H (2016) Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution. Ionics (Kiel) 22:1369–1376. CrossRefGoogle Scholar
  17. 17.
    Qiu S, Fang T, Zhu Y et al (2019) Li1.2Mn0.6Ni0.2O2 with 3D porous rod-like hierarchical micro/nanostructure for high-performance cathode material. J Alloys Compd 790:863–870. CrossRefGoogle Scholar
  18. 18.
    Han J, Zheng H, Hu Z et al (2019) Facile synthesis of Li-rich layered oxides with spinel-structure decoration as high-rate cathode for lithium-ion batteries. Electrochim Acta 299:844–852. CrossRefGoogle Scholar
  19. 19.
    Zhao C, Wang X, Liu R et al (2014) β-MnO2 sacrificial template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery cathodes. RSC Adv 4:7154. CrossRefGoogle Scholar
  20. 20.
    Zhao T, Chen S, Li L et al (2013) Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213. CrossRefGoogle Scholar
  21. 21.
    Ju J-H, Ryu K-S (2011) Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core–shell structure as cathode material for Li-ion batteries. J Alloys Compd. CrossRefGoogle Scholar
  22. 22.
    Xiang Y, Li J, Liao Q, Wu X (2019) Morphology and particle growth of Mn-based carbonate precursor in the presence of ethylene glycol for high-capacity Li-rich cathode materials. Ionics (Kiel) 25:81–87. CrossRefGoogle Scholar
  23. 23.
    Li L, Li Y, Li L, Chen N, Han Q, Zhang X, Xu H (2017) Thermodynamic analysis on the coprecipitation of Ni-Co-Mn hydroxide. Metall Mater Trans B Process Metall Mater Process Sci 48:2743–2750. CrossRefGoogle Scholar
  24. 24.
    Xiang Y, Yin Z, Li X (2014) An improved carbonate precipitation method for the preparation of Li1.2Ni0.12Co0.12Mn0.56O2 cathode material. Ionics (Kiel) 20:163–168. CrossRefGoogle Scholar
  25. 25.
    Wang D, Belharouak I, Zhou G, Amine K (2013) Synthesis of lithium and manganese-rich cathode materials via an oxalate co-precipitation method. J Electrochem Soc 160:A3108–A3112. CrossRefGoogle Scholar
  26. 26.
    Xie H, Du K, Hu G et al (2015) Synthesis of LiNi0.8Co0.15Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties. J Mater Chem A 3:20236–20243. CrossRefGoogle Scholar
  27. 27.
    Zhou F, Xu L, Kong J (2018) Co-precipitation synthesis of precursor with lactic acid acting as chelating agent and the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium-ion battery. J Solid State Electrochem 22:943–952. CrossRefGoogle Scholar
  28. 28.
    Bromley LA (1973) Thermodynamic properties of strong electrolytes in aqueous solutions. AICHE J 19:313–320. CrossRefGoogle Scholar
  29. 29.
    Zemaitis JF (1980) Predicting vapor-liquid-solid equilibria in multicomponent aqueous solutions of electrolytes. ACS Symposium Series:227–246Google Scholar
  30. 30.
    Lencka MM, Riman RE (1993) Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem Mater 5:61–70. CrossRefGoogle Scholar
  31. 31.
    Beverskog B, Puigdomenech I (1996) Revised pourbaix diagrams for iron at 25–300 °C. Corros Sci 38:2121–2135. CrossRefGoogle Scholar
  32. 32.
    Plyasunov AV, Shock EL (2001) Correlation strategy for determining the parameters of the revised Helgeson-Kirkham-Flowers model for aqueous nonelectrolytes. Geochim Cosmochim Acta 65:3879–3900. CrossRefGoogle Scholar
  33. 33.
    Zou W, Xia F-J, Song J-P et al (2019) Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery. Electrochim Acta 318:875–882. CrossRefGoogle Scholar
  34. 34.
    Li Y, Deng S, Chen Y et al (2019) Dual functions of residue Li-reactive coating with C4H6CoO4 on high-performance LiNiO2 cathode material. Electrochim Acta 300:26–35. CrossRefGoogle Scholar
  35. 35.
    Chen Y, Li Y, Tang S et al (2018) Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J Power Sources 395:403–413. CrossRefGoogle Scholar
  36. 36.
    Ming L, Zhang B, Cao Y et al (2018) Effect of Nb and F co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for high-performance lithium-ion batteries. Front Chem 6:1–12. CrossRefGoogle Scholar
  37. 37.
    Gao J, Huang Z, Li J, He X, Jiang C (2014) Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery. Ionics (Kiel) 20:301–307. CrossRefGoogle Scholar
  38. 38.
    Croy JR, Kim D, Balasubramanian M et al (2012) Countering the voltage decay in high capacity xLi2MnO3•(1–x)LiMO2 electrodes (M=Mn, Ni, co) for Li+-ion batteries. J Electrochem Soc 159:A781–A790. CrossRefGoogle Scholar
  39. 39.
    Cabana J, Johnson CS, Yang X-Q et al (2010) Structural complexity of layered-spinel composite electrodes for Li-ion batteries. J Mater Res 25:1601–1616. CrossRefGoogle Scholar
  40. 40.
    Gao Y, Patel RL, Shen K-Y, Wang X, Axelbaum RL, Liang X (2018) Boosting the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by atomic layer-deposited CeO2 coating. ACS Omega 3:906–916. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yabuuchi N, Yoshii K, Myung S-T et al (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419. CrossRefPubMedGoogle Scholar
  42. 42.
    Assat G, Tarascon J-M (2018) Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy 3:373–386. CrossRefGoogle Scholar
  43. 43.
    Li X, Qiao Y, Guo S et al (2018) Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv Mater 30:1705197. CrossRefGoogle Scholar
  44. 44.
    Radin MD, Vinckeviciute J, Seshadri R, Van der Ven A (2019) Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat Energy 4:639–646. CrossRefGoogle Scholar
  45. 45.
    Han S, Xia Y, Wei Z et al (2015) A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2 , Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge–discharge. J Mater Chem A 3:11930–11939. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Shiyi Deng
    • 1
    • 2
  • Yongxiang Chen
    • 1
  • Georgios Kolliopoulos
    • 2
  • Vladimiros G. Papangelakis
    • 2
  • Yunjiao Li
    • 1
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations