pp 1–8 | Cite as

Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries

  • Anxia Ma
  • Zhoulan Yin
  • Jiexi Wang
  • Zhixing Wang
  • Huajun Guo
  • Guochun YanEmail author
Original Paper


Herein, we report a series of O3-type Na(Ni1/3Mn1/3Fe1/3)1-xAlxO2 (x = 0, 0.03, 0.05, 0.07) oxides as sodium-ion battery cathode materials synthesized via spray pyrolysis method. The structure, morphology, and electrochemical performance of Na(Ni1/3Mn1/3Fe1/3)1-xAlxO2 (x = 0, 0.03, 0.05, 0.07) are characterized by XRD, SEM, CV, and galvanostatic charge and discharge tests, respectively. Na(Ni1/3Mn1/3Fe1/3)0.95Al0.05O2 delivers an initial discharge capacity of 145.4 mAh g−1 at 0.1 C and exhibits a favorable reversible capacity about 128.4 mAh g−1 after 80 cycles at 0.2 C, with the capacity retention of 77.5% at the voltage range of 2.0 to 4.2 V. XPS analysis reveals that Al-doping could alleviate the Jahn-Teller effect caused by Mn3+ and enhance the structural stability of layered oxides. The results confirm that a small quantity of (5 at. %) Al-doping improves the structural stability of the material, therefore leading to the excellent electrochemical performance.


Al-doping O3-type cathode material Sodium ion batteries Spray pyrolysis 


Funding information

This work is supported by the National Natural Science Foundation of China (Nos. 51804344, 51704332, and 51874360) and the Innovation and Entrepreneurship Project of Hunan Province, China (Grant No. 2018GK5026).


  1. 1.
    Hou Q, Ren J, Chen H, Yang P, Shao Q, Zhao M, Zhao X, He H, Wang N, Luo Q, Guo Z (2018) Synergistic hematite-fullerene electron-extracting layers for improved efficiency and stability in perovskite solar cells. ChemElectroChem 5:725–725CrossRefGoogle Scholar
  2. 2.
    Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947PubMedCrossRefGoogle Scholar
  3. 3.
    Hwang JY, Myung ST, Choi JU, Yoon CS, Yashiro H, Sun YK (2017) Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J Mater Chem A 5:23671–23680CrossRefGoogle Scholar
  4. 4.
    Li G, Yin Z, Guo H, Wang Z, Yan G, Yang Z, Liu Y, Ji X, Wang J (2019) Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor. Adv Energy Mater 9:1802878CrossRefGoogle Scholar
  5. 5.
    Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y.A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu, Y. Li (2018) Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping, Nat. Energy 3:936–943CrossRefGoogle Scholar
  6. 6.
    Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1:16132CrossRefGoogle Scholar
  7. 7.
    Wang PF, You Y, Yin YX, Guo YG (2018) Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater 8:1701912CrossRefGoogle Scholar
  8. 8.
    Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120CrossRefGoogle Scholar
  9. 9.
    Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRefGoogle Scholar
  10. 10.
    Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu YS, Maier J, Yu Y (2018) Multi-electron reaction materials for sodium-based batteries. Mater Today 21:960–973CrossRefGoogle Scholar
  11. 11.
    Zhao J, Zhao L, Dimov N, Okada S, Nishida T (2013) Electrochemical and thermal properties of α-NaFeO2Cathode for Na-ion batteries. J Electrochem Soc 160:A3077–A3081CrossRefGoogle Scholar
  12. 12.
    Ding JJ, Zhou YN, Sun Q, Fu ZW (2012) Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 22:85–88CrossRefGoogle Scholar
  13. 13.
    Yao HR, Wang PF, Gong Y, Zhang J, Yu X, Gu L, OuYang C, Yin YX, Hu E, Yang XQ, Stavitski E, Guo YG, Wan LJ (2017) Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J Am Chem Soc 139:8440–8443PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang X, Jiang K, Guo S, Mu X, Zhang X, He P, Han M, Zhou H (2018) Exploring a high capacity O3-type cathode for sodium-ion batteries and its structural evolution during an electrochemical process. Chem Commun 54:12167–12170CrossRefGoogle Scholar
  15. 15.
    Sui Y, Hao Y, Zhang X, Zhong S, Chen J, Li J, Wu L (2019) Spray-drying synthesis of P2-Na2/3Fe1/2Mn1/2O2 with improved electrochemical properties. Adv Powder Tech.
  16. 16.
    Zhu C, Song K, van Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180PubMedCrossRefGoogle Scholar
  17. 17.
    Ge X, Li X, Wang Z, Guo H, Yan G, Wu X, Wang J (2019) Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem Eng J 357:458–462CrossRefGoogle Scholar
  18. 18.
    Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591PubMedCrossRefGoogle Scholar
  19. 19.
    Li H, Bai Y, Wu F, Ni Q, Wu C (2015) Na3V2(PO4)3 /C nanorods as advanced cathode material for sodium ion batteries. Solid State Ionics 278:281–286CrossRefGoogle Scholar
  20. 20.
    Wu L, Hu Y, Zhang X, Liu J, Zhu X, Zhong S (2018) Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J Power Sources 374:40–47CrossRefGoogle Scholar
  21. 21.
    Wu L, Shi S, Zhang X, Yang Y, Liu J, Tang S, Zhong S (2018) Room-temperature pre-reduction of spinning solution for the synthesis of Na3V2(PO4)3/C nanofibers as high-performance cathode materials for Na-ion batteries. Electrochem Acta 274:233–241CrossRefGoogle Scholar
  22. 22.
    Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem 52:1964–1967CrossRefGoogle Scholar
  23. 23.
    Han L, Yu XY, Lou XW (2016) Formation of Prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-co-mixed oxide for enhanced oxygen evolution. Adv Mater 28:4601–4605PubMedCrossRefGoogle Scholar
  24. 24.
    Zheng S, Zhong G, McDonald MJ, Gong Z, Liu R, Wen W, Yang C, Yang Y (2016) Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. J Mater Chem A 4:9054–9062CrossRefGoogle Scholar
  25. 25.
    Wang J, He X, Zhou D, Schappacher F, Zhang X, Liu H, Stan MC, Cao X, Kloepsch R, Sofy MS, Schumacher G, Li J (2016) O3-type Na[Fe1/3Ni1/3Ti1/3]O2 cathode material for rechargeable sodium ion batteries. J Mater Chem A 4:3431–3437CrossRefGoogle Scholar
  26. 26.
    Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B+C 99:81–85CrossRefGoogle Scholar
  27. 27.
    Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P (1981) Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 3-4:165–169CrossRefGoogle Scholar
  28. 28.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517PubMedCrossRefGoogle Scholar
  29. 29.
    Vassilaras P, Ma X, Li X, Ceder G (2012) Electrochemical properties of monoclinic NaNiO2. J Electrochem Soc 160:A207–A211CrossRefGoogle Scholar
  30. 30.
    Wang Q, Mariyappan S, Vergnet J, Abakumov AM, Rousse G, Rabuel F, Chakir M, Tarascon JM (2019) Reaching the energy density limit of layered O3-NaNi0.5Mn0.5O2 electrodes via dual Cu and Ti substitution. Adv Energy Mater 9:1901785CrossRefGoogle Scholar
  31. 31.
    Zhou C, Yang L, Zhou C, Lu B, Liu J, Ouyang L, Hu R, Liu J, Zhu M (2019) Co-substitution enhances the rate capability and stabilizes the cyclic performance of O3-type cathode NaNi0.45-xMn0.25Ti0.3CoxO2 for sodium-ion storage at high voltage. ACS Appl Mater Interfaces 11:7906–7913PubMedCrossRefGoogle Scholar
  32. 32.
    Wang QC, Meng JK, Yue XY, Qiu QQ, Song Y, Wu XJ, Fu ZW, Xia YY, Shadike Z, Wu J, Yang XQ, Zhou YN (2018) Tuning P2-structured cathode material by Na-site mg substitution for Na-ion batteries. J Am Chem Soc 141:840–848PubMedCrossRefGoogle Scholar
  33. 33.
    Oh SM, Myung ST, Hwang JY, Scrosati B, Amine K, Sun YK (2014) High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem Mater 26:6165–6171CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Huang Y, Liu Y, Sun S, Wang K, Li Y, Li X, Han J, Huang Y (2017) F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries. Sci China Mater 60:629–636CrossRefGoogle Scholar
  35. 35.
    Yuan D, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y (2014) P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim Acta 116:300–305CrossRefGoogle Scholar
  36. 36.
    Yuan DD, Wang YX, Cao YL, Ai XP, Yang HX (2015) Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries, ACS appl. Mater Interf 7:8585–8591CrossRefGoogle Scholar
  37. 37.
    Xie Y, Wang H, Xu G, Wang J, Sheng H, Chen Z, Ren Y, Sun CJ, Wen J, Wang J, Miller DJ, Lu J, Amine K, Ma ZF (2016) In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv Energy Mater 6:1601306CrossRefGoogle Scholar
  38. 38.
    Li ZY, Gao R, Sun L, Hu Z, Liu X (2017) Zr-doped P2-Na0.75Mn0.55Ni0.25Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochim Acta 223:92–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Anxia Ma
    • 1
    • 2
  • Zhoulan Yin
    • 2
  • Jiexi Wang
    • 1
  • Zhixing Wang
    • 1
  • Huajun Guo
    • 1
  • Guochun Yan
    • 1
    Email author
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations