Advertisement

Ionics

pp 1–7 | Cite as

Controllable synthesis of 3D porous SnO2/carbon towards enhanced lithium-ion batteries

  • Zhanyuan Tian
  • Jiawei Zhao
  • Bing Li
  • Yangyang Feng
  • Jiangxuan SongEmail author
  • Chunming Niu
  • Le ShaoEmail author
  • Wenxue ZhangEmail author
Original Paper

Abstract

In this report, the watermelon-like SnO2 nanoparticles embedded in the three-dimensional (3D) porous carbon matrix are successfully fabricated through a simple one-pot strategy. In this nano-architecture, the carbon with sufficient void space is uniformly mixed with the SnO2, while the adjacent SnO2 particles are separated by carbon. The special 3D architecture can not only protect the SnO2 particles from agglomeration but also improve the conductivity when compared with independent SnO2. Moreover, the carbon matrix with numerous void space can efficiently buffer the volume change and separate SnO2 nanoparticles, leading to excellent cyclic stability. When applied in lithium-ion battery (LIBs), the produced 3D porous SnO2/C composite exhibited a high specific capacity of ~ 513 mAh/g with outstanding cyclic stability of 92.5% capacity retention after 250 cycles at the current density of 250 mA/g.

Keywords

SnO2 Watermelon-like Porous carbon Li-ion battery 

Notes

Funding information

This work is supported by the National Natural Science Foundation of China (Grant No. 51602250 and 21875181), the 111 Project 2.0 of China (BP2018008), China Postdoctoral Science Foundation Funded Project (Grant No. 2018 M631149), National Postdoctoral Program for Innovative Talents (Grant No. BX20180241), and Postdoctoral Science Foundation of Shaanxi province.

Supplementary material

11581_2019_3426_MOESM1_ESM.pdf (538 kb)
ESM 1 (PDF 538 kb)

References

  1. 1.
    Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600539.  https://doi.org/10.1002/advs.201600539 CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935.  https://doi.org/10.1126/science.1212741 CrossRefPubMedGoogle Scholar
  3. 3.
    Thackeray MM, Wolverton C, Isaacs ED (2012) Energy Environ Sci 5:7854–7863.  https://doi.org/10.1039/C2EE21892E CrossRefGoogle Scholar
  4. 4.
    Wang Y-X, Lim Y-G, Park M-S, Chou S-L, Kim JH, Liu H-K, Dou S-X, Kim Y-J (2014) J Mater Chem A 2:529–534.  https://doi.org/10.1039/C3TA13592F CrossRefGoogle Scholar
  5. 5.
    Jia R, Yue J, Xia Q, Xu J, Zhu X, Sun S, Zhai T, Xia H (2018) Energy Storage Mater 13:303–311.  https://doi.org/10.1016/j.ensm.2018.02.009 CrossRefGoogle Scholar
  6. 6.
    Feng YY, Zhang HJ, Zhang Y, Bai YJ, Wang Y (2016) J Mater Chem A 4:3267–3277.  https://doi.org/10.1039/c5ta09699e CrossRefGoogle Scholar
  7. 7.
    Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Total Chem Soc Rev 44:5926–5940.  https://doi.org/10.1039/C4CS00442F CrossRefGoogle Scholar
  8. 8.
    Hong Y, Mao W, Hu Q, Chang S, Li D, Zhang J, Liu G, Ai G (2019) J Power Sources 428:44–52.  https://doi.org/10.1016/j.jpowsour.2019.04.093 CrossRefGoogle Scholar
  9. 9.
    Liang J, Yu X-Y, Zhou H, Wu HB, Ding S, Lou XW (2014) Total Angew Chem Int Ed 53:12803–12807.  https://doi.org/10.1002/anie.201407917 CrossRefGoogle Scholar
  10. 10.
    Xia L, Wang S, Liu G, Ding L, Li D, Wang H, Qiao S (2016) Total Small 12:853–859.  https://doi.org/10.1002/smll.201503315 CrossRefGoogle Scholar
  11. 11.
    Lee J-I, Song J, Cha Y, Fu S, Zhu C, Li X, Lin Y, Song M-K (2017) Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life. Nano Res 10:4398–4414.  https://doi.org/10.1007/s12274-017-1756-3 CrossRefGoogle Scholar
  12. 12.
    Cui D, Zheng Z, Peng X, Li T, Sun T, Yuan L (2017) J Power Sources 362:20–26.  https://doi.org/10.1016/j.jpowsour.2017.07.024 CrossRefGoogle Scholar
  13. 13.
    Chen ZW, Du J, Zhang HJ, Jiao Z, Wu MH, Shek CH, Wu CML, Lai JKL (2009) Exploring the microstructural and electrical properties of SnO2 nanorods prepared by a widely applicable route. Acta Mater 57:4632–4637.  https://doi.org/10.1016/j.actamat.2009.06.041 CrossRefGoogle Scholar
  14. 14.
    Wang JZ, Du N, Zhang H, Yu JX, Yang DR (2011) J Phys Chem C 115:11302–11305.  https://doi.org/10.1021/jp203168p CrossRefGoogle Scholar
  15. 15.
    Park M-S, Wang G-X, Kang Y-M, Wexler D, Dou S-X, Liu H-K (2007) Total Angew Chem Int Ed 46:750–753.  https://doi.org/10.1002/anie.200603309 CrossRefGoogle Scholar
  16. 16.
    Liu Y, Zheng C, Wang W, Yin C, Wang G (2001) Total Adv Mater 13:1883–1887.  https://doi.org/10.1002/1521-4095(200112)13:24<1883::aid-adma1883>3.0.co;2-q CrossRefGoogle Scholar
  17. 17.
    Wang Y, Lee JY, Zeng HC (2005) Total Chem Mater 17:3899–3903.  https://doi.org/10.1021/cm050724f CrossRefGoogle Scholar
  18. 18.
    Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ (2010) Total J Am Chem Soc 132:46–47.  https://doi.org/10.1021/ja909321d CrossRefGoogle Scholar
  19. 19.
    Zhang W-M, Hu J-S, Guo Y-G, Zheng S-F, Zhong L-S, Song W-G, Wan L-J (2008) Total Adv Mater 20:1160–1165.  https://doi.org/10.1002/adma.200701364 CrossRefGoogle Scholar
  20. 20.
    Lou XW, Yuan C, Archer LA (2007) Small 3:261–265.  https://doi.org/10.1002/smll.200600445 CrossRefPubMedGoogle Scholar
  21. 21.
    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Total Science 347:1246501.  https://doi.org/10.1126/science.1246501 CrossRefGoogle Scholar
  22. 22.
    Chen G, Yan L, Luo H, Guo S (2016) Total Adv Mater 28:7580–7602.  https://doi.org/10.1002/adma.201600164 CrossRefGoogle Scholar
  23. 23.
    Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Total Adv Energ Mater 2:873–877.  https://doi.org/10.1002/aenm.201100691 CrossRefGoogle Scholar
  24. 24.
    Zhang BA, Zheng QB, Huang ZD, Oh SW, Kim JK (2011) Carbon 49:4524–4534.  https://doi.org/10.1016/j.carbon.2011.06.059 CrossRefGoogle Scholar
  25. 25.
    Li Y, Lv X, Lu J, Li J (2010) J Phys Chem C 114:21770–21774.  https://doi.org/10.1021/jp1050047 CrossRefGoogle Scholar
  26. 26.
    Bu Y, Huang Y, Li T, Wu P, Wang Y, Yao J (2015) Total J Alloy Comp 629:69–73.  https://doi.org/10.1016/j.jallcom.2014.11.209 CrossRefGoogle Scholar
  27. 27.
    Kisu K, Iijima M, Iwama E, Saito M, Orikasa Y, Naoi W, Naoi K (2014) J Mater Chem A 2:13058–13068.  https://doi.org/10.1039/c4ta01994f CrossRefGoogle Scholar
  28. 28.
    Sun L, Si H, Zhang Y, Shi Y, Wang K, Liu J, Zhang Y (2019) J Power Sources 415:126–135.  https://doi.org/10.1016/j.jpowsour.2019.01.063 CrossRefGoogle Scholar
  29. 29.
    Wang MS, Wang ZQ, Yang ZL, Huang Y, Zheng JM, Li X (2017) Total Electrochim Acta 240:7–15.  https://doi.org/10.1016/j.electacta.2017.04.031 CrossRefGoogle Scholar
  30. 30.
    Zhang BA, Yu Y, Huang ZD, He YB, Jang D, Yoon WS, Mai YW, Kang FY, Kim JK (2012) Total Energy Environ Sci 5:9895–9902.  https://doi.org/10.1039/c2ee23145j CrossRefGoogle Scholar
  31. 31.
    Abouali S, Akbari Garakani M, Kim J-K (2018) Total Electrochim Acta 284:436–443.  https://doi.org/10.1016/j.electacta.2018.07.162 CrossRefGoogle Scholar
  32. 32.
    Wang H, Wang J, Xie S, Liu W, Niu C (2018) Total Nanoscale 10:6159–6167.  https://doi.org/10.1039/C8NR00405F CrossRefGoogle Scholar
  33. 33.
    Feng YY, Zhang HJ, Mu YP, Li WX, Sun JL, Wu K, Wang Y (2015) Total Chem Eur J 21:9229–9235.  https://doi.org/10.1002/chem.201500950 CrossRefGoogle Scholar
  34. 34.
    Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) J Phys Chem C 113:20504–20508.  https://doi.org/10.1021/jp908244m CrossRefGoogle Scholar
  35. 35.
    Yao W, Wu S, Zhan L, Wang Y (2019) Total Chem L Eng J 361:329–341.  https://doi.org/10.1016/j.cej.2018.08.217 CrossRefGoogle Scholar
  36. 36.
    Wang W, Liang Y, Kang Y, Liu L, Xu Z, Tian X, Mai W, Fu H, Lv H, Teng K, Jiao X, Li F (2019) Total Mater Chem Phys 223:762–770.  https://doi.org/10.1016/j.matchemphys.2018.11.066 CrossRefGoogle Scholar
  37. 37.
    Deng Y, Fang C, Chen G (2016) J Power Sources 304:81–101.  https://doi.org/10.1016/j.jpowsour.2015.11.017 CrossRefGoogle Scholar
  38. 38.
    Wang M, Wang X, Yao Z, Tang W, Xia X, Gu C, Tu J (2019) Total ACS Appl Mater Interfaces 11:24198–24204.  https://doi.org/10.1021/acsami.9b08378 CrossRefGoogle Scholar
  39. 39.
    Liu M, Zhang S, Dong H, Chen X, Gao S, Sun Y, Li W, Xu J, Chen L, Yuan A, Lu W (2019) Total ACS Sustain Chem Eng 7:4195–4203.  https://doi.org/10.1021/acssuschemeng.8b05869 CrossRefGoogle Scholar
  40. 40.
    Wang H, Jiang G, Tan X, Liao J, Yang X, Yuan R, Chai Y (2018) Total Inorg Chem Commun 95:67–72.  https://doi.org/10.1016/j.inoche.2018.07.013 CrossRefGoogle Scholar
  41. 41.
    Shao Q, Tang J, Sun Y, Li J, Zhang K, Yuan J, Zhu D-M, Qin L-C (2017) Total Nanoscale 9:4439–4444.  https://doi.org/10.1039/C6NR09689A CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Materials Science and EngineeringChang’an UniversityXi’anChina
  3. 3.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  4. 4.Shaanxi Coal and Chemical Technology Institute Co., Ltd.Xi’anChina

Personalised recommendations