Advertisement

Carbon nanotube linked NaTi2(PO4)3/C composite with three-dimensional conductive network as superior electrode for sodium ion battery

  • 17 Accesses

Abstract

NASICON-type NaTi2(PO4)3 is regarded as promising electrode material due to stable structure and large three-dimensional channels. NaTi2(PO4)3/C composite with carbon nanotubes modification (NTP-CNTs) has been synthesized via sol-gel approach and employed for sodium ion battery. Carbon nanotubes have no distinct influence on crystal form of NaTi2(PO4)3. NTP-CNTs displays distinguished cycling and rate performance. NTP-CNTs delivers discharge capacity of 246.2, 220.2, and 183.5 mAh g−1 at 0.04, 0.1, and 2 A g−1, respectively, 60.4, 57.4, and 70.9 mAh g−1 larger than those of bare NTP. Moreover, discharge capacities of NTP and NTP-CNTs are 121.6 and 169.3 mAh g−1 after 500 cycles at 1 A g−1, respectively. Outstanding electrochemical property may be due to that carbon nanotubes enhance electrical conductivity and dispersibility of NTP-CNTs. Decentralized NaTi2(PO4)3 particles and carbon nanotubes corporately form three-dimensional conductive network with good dispersion, which is beneficial to accelerating the migration of sodium ions and electrons.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Wu M, Ni W, Hu J, Ma J (2019) NASICON-structured NaTi2(PO4)3 for sustainable energy storage. Nano-Micro Lett 11:44–79

  2. 2.

    Qi S, Xu B, Tiong VT, Hu J, Ma J (2020) Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J 379:122261–122292

  3. 3.

    Jiang Z, Li Y, Zhu J, Li B, Li C, Wang L, Meng W, He Z, Dai L (2019) Synthesis and performance of a graphene decorated NaTi2(PO4)3/C anode for aqueous lithium-ion batteries. J Alloy Compd 791:176–183

  4. 4.

    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

  5. 5.

    He X, Sun Z, Zou Q, Yang J, Wu L (2019) Codeposition of nanocrystalline co-Ni catalyst based on 1-ethyl-3-methylimidazolium bisulfate and ethylene glycol system for hydrogen evolution reaction. J Electrochem Soc 166:D908–D915

  6. 6.

    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

  7. 7.

    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

  8. 8.

    Wu D, Wang C, Wu M, Chao Y, He P, Ma J (2020) Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem 43:24–32

  9. 9.

    Su MR, Liu S, Wan HF, Dou AC, Liu K, Liu YJ (2019) Effect of binders on performance of Si/C composite as anode for Li-ion batteries. Ionics 25:2103–2109

  10. 10.

    Yan Z, Yang Q, Wang Q, Ma J (2019) Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries, Chin Chem Lett. https://doi.org/10.1016/j.cclet.2019.11.002

  11. 11.

    Barpanda P, Liu G, Ling CD, Tamaru M, Avdeev M, Chung S, Yamada Y, Yamada A (2013) Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem Mater 25:3480–3487

  12. 12.

    Pavoni FH, Sita LE, dos Santos CS, da Silva SP, da Silva PRC, Scarminio J (2018) LiCoO2 particle size distribution as a function of the state of health of discarded cell phone batteries. Powder Technol 326:78–83

  13. 13.

    Huang GC, Chen T, Chen WX, Wang Z, Chang K, Ma L, Huang FH, Chen DY, Lee JY (2013) Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9:3693–3703

  14. 14.

    Zheng W, Gao R, Zhou T, Huang X (2018) Enhanced electrochemical performance of Na3V2(PO4)3 with Ni2+ doping by a spray drying-assisted process for sodium ion batteries. Solid State Ionics 324:183–190

  15. 15.

    Xu BB, Ma X, Tian J, Zhao F, Liu Y, Wang BF, Yang HS, Xia YY (2019) Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries. Ionics 25:4171–4177

  16. 16.

    Chen Z, Zhu DJ, Li JL, Liang D, Liu MQ, Hu ZH, Li XB, Feng ZJ, Huang JT (2019) Porous functionalized carbon as anode for a long cycling of sodium-ion batteries. Ionics 25:4517–4522

  17. 17.

    Gao XCMR, Gao Q, Xu YF, Zheng YR, Jiang J, Yu SH (2014) Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 8:3970–3978

  18. 18.

    Jiang Y, Wei M, Feng J, Ma Y, Xiong S (2016) Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ Sci 9:1430–1438

  19. 19.

    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

  20. 20.

    Chen L, Zhang LY, Zhou XF, Liu ZP (2014) Aqueous batteries based on mixed monovalence metal ions: a new battery family. ChemSusChem 7:2295–2302

  21. 21.

    Aravindan V, Chuiling W, Madhavi S (2012) Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode. RSC Adv 2:7534–7539

  22. 22.

    La Mantia F, Pasta M, Deshazer HD, Logan BE, Cui Y (2011) Batteries for efficient energy extraction from a water salinity difference. Nano Lett 11:1810–1813

  23. 23.

    Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821–2837

  24. 24.

    Aragón MJ, Vidal-Abarca C, Lavela P, Tirado JL (2014) High reversible sodium insertion into iron substituted Na1+xTi2−xFex(PO4)3. J Power Sources 252:208–213

  25. 25.

    Mortemard de Boisse B, Carlier D, Guignard M, Delmas C (2013) Structural and electrochemical characterizations of P2 and new O3-NaxMn1-yFeyO2 phases prepared by auto-combustion synthesis for Na-ion batteries. J Electrochem Soc 160:A569–A574

  26. 26.

    Ding J, Zhou Y, Sun Q, Fu Z (2012) Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem Commun 22:85–88

  27. 27.

    Dirican M, Lu Y, Ge Y, Yildiz O, Zhang X (2015) Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl Mater & Interfaces 7:18387–18396

  28. 28.

    Jian Z, Han W, Lu X, Yang H, Hu Y, Zhou J, Zhou Z, Li J, Chen W, Chen D, Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160

  29. 29.

    Kubota K, Yabuuchi N, Yoshida H, Dahbi M, Komaba S (2014) Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull 39:416–422

  30. 30.

    Kubota K, Komaba S (2015) Practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162:A2538–A2550

  31. 31.

    Barpanda P, Ye T, Nishimura S, Chung S, Yamada Y, Okubo M, Zhou H, Yamada A (2012) Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem Commun 24:116–119

  32. 32.

    Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Structural, transport, and electrochemical investigation of novel AMSO4F (a=Na, Li; M=Fe, co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg Chem 49:7401–7413

  33. 33.

    Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S (2017) Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries. ACS Appl Mater & Interfaces 9:27697–27706

  34. 34.

    Hou Z, Li X, Liang J, Zhu Y, Qian Y (2015) An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J Mater Chem A 3:1400–1404

  35. 35.

    Chen C, Matsumoto K, Nohira T, Hagiwara R (2014) Full utilization of superior charge-discharge characteristics of Na1.56Fe1.22P2O7 positive electrode by using ionic liquid electrolyte. J Electrochem Soc 162:A176–A180

  36. 36.

    Zhu Q, Wang M, Nan B, Shi H, Zhang X, Deng Y, Wang L, Chen Q, Lu Z (2017) Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries. J Power Sources 362:147–159

  37. 37.

    Wang W, Jiang B, Hu L, Jiao S (2014) Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries. J Mater Chem A 2:1341–1345

  38. 38.

    Zhan R, Hu L, Han J, Dai C, Jiang J, Xu M (2018) Exploration of Mn0.5Ti2(PO4)3@rgo composite as anode electrode for Na-ion battery. J Mater Sci Mater Electron 29:4250–4255

  39. 39.

    Fang Y, Zhang J, Xiao L, Ai X, Cao Y, Yang H (2017) Phosphate framework electrode materials for sodium ion batteries. Adv Sci 4:1600392–1600412

  40. 40.

    Huang Z, Liu L, Yi L, Xiao W, Li M, Zhou Q, Guo G, Chen X, Shu H, Yang X, Wang X (2016) Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries. J Power Sources 325:474–481

  41. 41.

    Hung TF, Lan WH, Yeh YW, Chang WS, Yang CC, Lin JC (2016) Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustain Chem Eng 4:7074–7079

  42. 42.

    Li X, Zhu X, Liang J, Hou Z, Wang Y, Lin N, Zhu Y, Qian Y (2014) Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries. J Electrochem Soc 161:A1181–A1187

  43. 43.

    Lin B, Zhang S, Deng C (2016) Understanding the effect of depressing surface moisture sensitivity on promoting sodium intercalation in coral-like Na3.12Fe2.44(P2O7)2/C synthesized via a flash-combustion strategy. J Mater Chem A 4:2550–2559

  44. 44.

    Liu Z, Qin X, Xu H, Chen G (2015) One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries. J Power Sources 293:562–569

  45. 45.

    Lu Y, Zhang S, Li Y, Xue L, Xu G, Zhang X (2014) Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J Power Sources 247:770–777

  46. 46.

    Pang G, Nie P, Yuan C, Shen L, Zhang X, Li H, Zhang C (2014) Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries. J Mater Chem A 2:20659–20666

  47. 47.

    Wu XW, Li YH, Li CC, He ZX, Xiang YH, Xiong LZ, Chen D, Yu Y, Sun K, He ZQ, Chen P (2015) The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive. J Power Sources 300:453–459

  48. 48.

    He Z, Jiang Y, Sun D, Dai L, Wang H (2016) Advanced LiTi2(PO4)3/C anode by incorporation of carbon nanotubes for aqueous lithium-ion batteries. Ionics 23:575–583

  49. 49.

    Liu S, Wang L, Liu J, Zhou M, Nian Q, Feng Y, Tao Z, Shao L (2019) Na3V2(PO4)2F3-SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. J Mater Chem A 7:248–256

  50. 50.

    Wei P, Liu Y, Wang Z, Huang Y, Jin Y, Liu Y, Sun S, Qiu Y, Peng J, Xu Y, Sun X, Fang C, Han J, Huang Y (2018) Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl Mater & Interfaces 10:27039–27046

  51. 51.

    Liang J, Fan K, Wei Z, Gao X, Song W, Ma J (2018) Porous NaTi2(PO4)3@C nanocubes as improved anode for sodium-ion batteries. Mater Res Bull 99:343–348

Download references

Author information

Correspondence to Weiguo Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Wu, M., Yang, C. et al. Carbon nanotube linked NaTi2(PO4)3/C composite with three-dimensional conductive network as superior electrode for sodium ion battery. Ionics (2020) doi:10.1007/s11581-019-03421-7

Download citation

Keywords

  • NaTi2(PO4)3
  • Carbon nanotubes
  • Sodium ion battery
  • Electrochemical performance