Advertisement

Ionics

pp 1–7 | Cite as

Synthesis and electrochemical performance of Pb3(OH)2(CO3)2/C anode material for lithium-ion battery application

  • Yanqing Zhang
  • Chuanqi FengEmail author
  • Yimin ZhangEmail author
  • Huimin Wu
  • Tao Liu
Original Paper

Abstract

Pb3 (OH)2(CO3)2 and Pb3 (OH)2(CO3)2/C are prepared by a hydrothermal method using particular carbon source (Tie Guanyin tea carbon is used as carbon source). The obtained samples are characterized by XRD, SEM, and TEM techniques. The content of carbon in Pb3(OH)2(CO3)2/C composite is detected by thermogravimetric analysis (TGA).The electrochemical performances of the samples are measured by battery testing system. The Pb3 (OH)2(CO3)2/C composite behaves better electrochemical properties than that of pure Pb3(OH)2(CO3)2 as an anode material. It has the initial discharge capacity as 1957 mAhg−1 and maintains it as 571 mAhg−1 after 100 cycles at current density of 100 mAhg−1. The reasons for Pb3 (OH)2(CO3)2/C to behave excellent electrochemical performances are discussed also. Pb3(OH)2(CO3)2/C may be a promising anode material for lithium battery application.

Keywords

Pb3 (OH)2(CO3)2/C composite Hydrothermal synthesis Anode material Lithium batteries Electrochemical properties 

Notes

References

  1. 1.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefGoogle Scholar
  2. 2.
    Nayak PK, Yang LT, Brehm WG (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120CrossRefGoogle Scholar
  3. 3.
    Bhatt MD, Lee JY (2019) High capacity conversion anodes in Li-ion batteries: a review. Int J Hydrogen Energy 44:10852–10905CrossRefGoogle Scholar
  4. 4.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  5. 5.
    Nazir HS, Batool M, Osorio FJB et al (2019) Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 129:491–523CrossRefGoogle Scholar
  6. 6.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359CrossRefGoogle Scholar
  7. 7.
    Zuo XX, Zhu J, Buschbaum PM et al (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRefGoogle Scholar
  8. 8.
    Mu YL, Wang L, Zhao Y et al (2017) 3D flower-like MnCO3 microcrystals: evolution mechanisms of morphology and enhanced electrochemical performances. Electrochimica Acta 251:119–128CrossRefGoogle Scholar
  9. 9.
    Cambaz MA, Reddy MA, Vinayan BP et al (2016) Mechanical milling assisted synthesis and electrochemical performance of high capacity LiFeBO3 for lithium batteries. ACS Appl Mater InterfacesACS Appl Mater Interfaces 8(3):2166–2172CrossRefGoogle Scholar
  10. 10.
    Shi SJ, Zhang M, Deng YT et al (2018) Efficient construction of a CoCO3/graphene composite anode material for lithium-ion batteries by stirring solvothermal reaction. Ceram Int 44(2018):3718–3725CrossRefGoogle Scholar
  11. 11.
    Zhang CC, Cai X, Xu DH et al (2018) Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries. Appl Surf Sci 428:73–81CrossRefGoogle Scholar
  12. 12.
    Yin JJ, Ding ZJ, Lei DN et al (2017) Zn-substituted CoCO3 embedded in carbon nanotubes network as high performance anode for lithium-ion batteries. J Alloys Compd 712:605–612CrossRefGoogle Scholar
  13. 13.
    Zhao ZW, Wang ZL, Denis DK et al (2019) Intrinsic lithium storage mechanisms and superior electrochemical behaviors of monodispersed hierarchical CoCO3 sub-microspheroids as a competitive anode towards Li-ion batteries. Electrochim Acta 307:20–29CrossRefGoogle Scholar
  14. 14.
    Ding ZJ, Qin XY, You CH et al (2018) Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2//CoCO3@rGO full cell study. Electrochim Acta 270:192–204CrossRefGoogle Scholar
  15. 15.
    Martos M, Morales J, Sanchez L (2003) Lead-based systems as suitable anode materials for li-ion batteries. Electrochim Acta 48:615CrossRefGoogle Scholar
  16. 16.
    Konstantinov K, Ng SH, Wang JZ, Wang GX, Wexler D, Liu HK (2006) Nanostructured PbO materials obtained in situ by spray solution technique for Li-ion batteries. J Power Sources 159:241CrossRefGoogle Scholar
  17. 17.
    Shu J, Ma R, Shao LY, Shui M, Hou L, Wu KQ, Chen YT, Wang DJ, Liang YX, Ren YL (2013) Facile preparation of nano-micro structure PbSbO2Cl as a novel anode material for lithium-ion batteries. RSC Adv 3:372–376CrossRefGoogle Scholar
  18. 18.
    Pan QM, Wang ZJ, Liu J, Yin GP, Gu M (2009) PbO@C core–shell nanocomposites as an anode material of lithium-ion batteries. Electrochem Commun 11:917–920CrossRefGoogle Scholar
  19. 19.
    Wang DJ, Wu KQ, Shao LY, Shui M, Ma R, Lin XT, Long NB, Ren YL, Shu J (2014) Facile fabrication of Pb(NO3)2/C as advanced anode material and its lithium storage mechanism. Electrochim Acta 120:110–121CrossRefGoogle Scholar
  20. 20.
    Martinetto P, Anne M, Dooryhee E, Walter P, Tsoucaris G (2002) Synthetic hydrocerussite, 2PbCO3·Pb(OH)2, by X-ray powder diffraction. Acta Crystallographica Section C Crystal Structure Communications 58(6):82–84CrossRefGoogle Scholar
  21. 21.
    Wei CL, He W, Zhang XD et al (2015) Synthesis of biocarbon coated Li3V2(PO4)3/C cathode material for lithium ion batteries using recycled tea. RSC AdvRSC Adv 5:28662–28669CrossRefGoogle Scholar
  22. 22.
    Michell EWJ, Ng KY (1980) X-ray powder diffraction of hydrocerussite studies of hydrocerussite (basic lead carbonate) as a stabiliser in plasticised polyvinyl chloride. Br Polym 12:114–120CrossRefGoogle Scholar
  23. 23.
    Steele IM, Pluth JJ, Livingstone A (1998) Mineral MagMineral Mag 62:451–459CrossRefGoogle Scholar
  24. 24.
    Ciomartan DA, Clark RJH, McDonald LJ, Odlyha M (1996) Studies on the thermal decomposition of basic lead(II) carbonate by Fourier transform Raman spectroscopy, X-ray diffraction and thermal analysis. J. Chem. Soc. Dalton Trans:3639–3645Google Scholar
  25. 25.
    Shao LY, Wu KQ, Jiang XX, Shui M, Ma R, Lao MM, Lin XT, Wang DJ, Long NB, Shu J (2014) Preparation and characterization of basic carbonates as novel anode materials for lithium-ion batteries. Ceram Int 40:3105–3116CrossRefGoogle Scholar
  26. 26.
    Liu XL, Yang SJ, Chen X et al (2017) Synthesis and electrochemical properties of FeCO3 with different morphology for lithium-ion battery application. J Alloys Compd 698:87–93CrossRefGoogle Scholar
  27. 27.
    Y.Q. Zhang, C.Q. Feng, Y.M. Zhang, H.M.Wu, S.Q. Wang (2019) Synthesis and performance of Li3V2 (PO4)3/C-V2O3 as novel anode material for lithium ion battery application. Ionics25:5717–5623Google Scholar
  28. 28.
    Zhang D, Popov BN, White RE (1998) J Power Sources 76:81–90CrossRefGoogle Scholar
  29. 29.
    Dang W, Wang F, Ding Y, Feng CQ, Guo ZP (2017) Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application. J Alloys Compd 690(5):72–79CrossRefGoogle Scholar
  30. 30.
    Zhan L, Xiang XS, Xie B, Gao B (2017) Preparing lead oxide nanoparticles from waste electric and electronic equipment by high temperature oxidation-evaporation and condensation. Powder Technol 308:30–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations