Advertisement

Ionics

pp 1–13 | Cite as

Surface modification of carbon materials by nitrogen/phosphorus co-doping as well as redox additive of ferrous ion for cooperatively boosting the performance of supercapacitors

  • Zhong Jie ZhangEmail author
  • Bing Han
  • Kun Yang Zhao
  • Ming Hui Gao
  • Zhen Qiang Wang
  • Xin Ming Yang
  • Xiang Ying ChenEmail author
Original Paper
  • 19 Downloads

Abstract

In this work, we demonstrate a cooperative strategy of surface modification of carbon materials by N/P co-doping and redox additive of Fe2+ ion for boosting the performance of supercapacitors. Using NH4HCO3 or NH4H2PO4 as N/P dopants, the modified carbon materials have increased concerning the electrical conductivity, porosity, and N/P contents. Furthermore, Fe2+ ion serving as redox additive has been incorporated. In a three-electrode configuration, the C-N-P-Fe sample exhibits capacitance of 371 F g−1, which is 2.38 times larger than the C-Blank-Fe sample; the redox process of Fe2+ ions is controlled by the diffusion. In a two-electrode configuration, the C-N-P-Fe sample delivers energy density of 7.7 Wh kg−1, almost 2.33 times higher than the C-Blank-Fe sample. Moreover, it unveils that the pseudo-capacitance contribution has been improved with increasing N/P doping by Trasatti method; the redox process of Fe2+ ions predominantly happens on negative electrode.

Keywords

Surface modification Nitrogen/phosphor Redox additive Cooperatively Supercapacitor 

Notes

Acknowledgments

The authors gratefully thank financial support from National Natural Science Foundation of China (51602003), Startup Foundation for Doctors of Anhui University (J01003211), and University Student Innovation Experiment Project of Anhui University (S201910357378).

References

  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854PubMedCrossRefGoogle Scholar
  2. 2.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531PubMedCrossRefGoogle Scholar
  4. 4.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855CrossRefGoogle Scholar
  5. 5.
    Yang M, Zhou Z (2017) Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv Sci:1600408PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhong M, Liu H, Wang M, Zhu YW, Chen XY, Zhang ZJ (2019) Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin. J Power Sources 438:226982CrossRefGoogle Scholar
  7. 7.
    Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013CrossRefGoogle Scholar
  8. 8.
    Lin Q, Zhang J, Lv W, Ma J, He Y, Kang F, Yang Q (2019) A functionalized carbon surface for high-performance sodium-ion storage semall 1902603Google Scholar
  9. 9.
    Kale VS, Hwang M, Chang H, Kang J, Chae S, Jeon Y, Yang J, Kim J, Ko Y, Piao Y, Hyeon T (2018) Microporosity-controlled synthesis of heteroatom codoped carbon nanocages by wrap-bake-sublime approach for flexible all-solid-state-supercapacitors. Adv Funct Mater:1803786CrossRefGoogle Scholar
  10. 10.
    Jin H, Feng X, Li J, Li M, Xia Y, Yuan Y, Yang C, Dai B, Lin Z, Wang J, Lu J, Wang S (2019) Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew Chem Int Ed 58:1–6CrossRefGoogle Scholar
  11. 11.
    Nazarian-Samani M, Haghighat-Shishavan S, Nazarian-Samani M, Kim M, Cho B, Oh S, Kashani-Bozorg S, Kim K (2017) Rational hybrid modulation of P, N dual-doped holey graphene for high performance supercapacitors. J Power Sources 372:286–296CrossRefGoogle Scholar
  12. 12.
    Akinwolemiwa B, Peng C, Chen Z (2015) Redox electrolytes in supercapacitors. J Electrochem Soc 162:A5054–A5059CrossRefGoogle Scholar
  13. 13.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251PubMedCrossRefGoogle Scholar
  14. 14.
    Senthilkumar ST, Kalai Selvan R, Melob JS (2013) Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A 1:12386–12394CrossRefGoogle Scholar
  15. 15.
    Lee J, Srimuk P, Fleischmann S, Su X, Hatton T, Presser V (2019) Redox-electrolytes for non-flow electrochemical energy storage: a critical review and best practice. Prog Mater Sci 101:46–89CrossRefGoogle Scholar
  16. 16.
    Mai L, Minhas-Khan A, Tian X, Hercule K, Zhao Y, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923PubMedCrossRefGoogle Scholar
  17. 17.
    Jayaramulu K, Dubal DP, Nagar B, Ranc V, Tomanec O, Petr M, Datta KKR, Zboril R, Gómez-Romero P, Fischer RA (2018) Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv Mater:1705789CrossRefGoogle Scholar
  18. 18.
    Nie Y, Wang Q, Chen XY, Zhang ZJ (2016) Nitrogen and oxygen functionalized hollow carbon materials: the capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte. J Power Sources 320:140–152CrossRefGoogle Scholar
  19. 19.
    Wang C, Zhou Y, Sun L, Wan P, Zhang X, Qiu J (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88CrossRefGoogle Scholar
  20. 20.
    Ismagilov ZR, Shalagina AE, Podyacheva OY, Ischenko AV, Kibis LS, Boronin AI, Chesalov YA, Kochubey DI, Romanenko AI, Anikeeva OB, Buryakov TI, Tkachev EN (2009) Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 47:1922–1929CrossRefGoogle Scholar
  21. 21.
    Cruz-Silva E, Lopez-Urias F, Munoz-Sandoval E, Sumpter BG, Terrones H, Charlier J, Meunier V, Terrones M (2009) Electronic transport and mechanical properties of phosphorus- and phosphorus nitrogen-doped carbon nanotubes. ACS Nano 3:1913–1921PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jiang H, Lee P, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53CrossRefGoogle Scholar
  23. 23.
    Qiu Z, Wang Y, Bi X, Zhou T, Zhou J, Zhao J, Miao Z, Yi W, Fu P, Zhuo S (2018) Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J Power Sources 376:82–90CrossRefGoogle Scholar
  24. 24.
    Hu W, Sun X, Xu D, Xiao Z, Chen X (2017) Microporous carbon materials by hydrogen treatment: the balance of porosity and graphitization upon the capacitive performance. Ind Eng Chem Res 56:7253–7259CrossRefGoogle Scholar
  25. 25.
    Ma W, Xie L, Dai L, Sun G, Chen J, Su F, Cao Y, Lei H, Kong Q, Chen C (2018) Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochim Acta 266:420–430CrossRefGoogle Scholar
  26. 26.
    Chen XY, Chen C, Zhang Z, Xie D, Deng X, Liu J (2013) Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J Power Sources 230:50–58CrossRefGoogle Scholar
  27. 27.
    Wang H, Yang G, Chen Z, Liu J, Fan X, Liang P, Huang Y, Lin J, Shen Z (2019) Nitrogen configuration dependent holey active sites toward enhanced K+ storage in graphite foam. J Power Sources 419:82–90CrossRefGoogle Scholar
  28. 28.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev 61:14095–14107CrossRefGoogle Scholar
  29. 29.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRefGoogle Scholar
  30. 30.
    Chu P, Li L (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96:253–277CrossRefGoogle Scholar
  31. 31.
    Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon 43:153–161CrossRefGoogle Scholar
  32. 32.
    Wang DW, Li F, Yin LC, Lu X, Chen ZG, Gentle IR, Lu GQ, Cheng HM (2012) Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chem Eur J 18:5345–5351PubMedCrossRefGoogle Scholar
  33. 33.
    Wu J, Zheng X, Jin C, Tian J, Yang R (2015) Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 92:327–338CrossRefGoogle Scholar
  34. 34.
    Ma X, Ning G, Qi C, Xu C, Gao J (2014) Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:14415–14422PubMedCrossRefGoogle Scholar
  35. 35.
    Ren L, Zhang G, Yan Z, Kang L, Xu H, Shi F, Lei Z, Liu Z (2017) High capacitive property for supercapacitor using Fe3+/Fe2+ redox couple additive electrolyte. Electrochim Acta 231:705–712CrossRefGoogle Scholar
  36. 36.
    Chun S, Evanko B, Wang X, Vonlanthen D, Ji X, Stucky G, Boettcher S (2015) Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat Commun 6:7818PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Augustyn V, Simon P, Dunn B (2014) Pseudo-capacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  38. 38.
    Sun X, Hu W, Xu D, Chen X, Cui P (2017) Integration of redox additive in H2SO4 solution and the adjustment of potential windows for improving the capacitive performances of supercapacitors. Ind Eng Chem Res 56:2433–2443CrossRefGoogle Scholar
  39. 39.
    Stoller M, Park S, Zhu Y, An J, Ruoff R (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jiao C, Zhang Z, Chen X (2019) Nitrogen and fluorine dual-doped carbon nanosheets for high-performance supercapacitors. Nano 14:1950042CrossRefGoogle Scholar
  41. 41.
    Zhang Z, Zheng Q, Sun L, Xu D, Chen X (2017) Two-dimensional carbon nanosheets for high-performance supercapacitors: large-scale synthesis and co-doping with nitrogen and phosphorus. Ind Eng Chem Res 56:12344–12353CrossRefGoogle Scholar
  42. 42.
    Zhang Z, Zhu Y, Chen X, Cao Y (2015) Pronounced improvement of supercapacitor capacitance by using redox active electrolyte of p-phenylenediamine. Electrochim Acta 176:941–948CrossRefGoogle Scholar
  43. 43.
    Zhang Z, Deng Z, Wang Q (2016) Illustrating the redox roles of amine and nitro groups linked to p-phenylenediamine and p-nitroaniline upon the improved capacitive performances. J Electroanal Chem 783:295–303CrossRefGoogle Scholar
  44. 44.
    Tian Y, Liu M, Che R, Xue R, Huang L (2016) Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K4Fe(CN)6 for enhanced performance of active carbon-based capacitors. J Power Sources 324:334–341CrossRefGoogle Scholar
  45. 45.
    Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107CrossRefGoogle Scholar
  46. 46.
    Hasegawa G, Deguchi T, Kanamori K, Kobayashi Y, Kageyama H, Abe T, Nakaishi K (2015) High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chem Mater 27:4703–4712CrossRefGoogle Scholar
  47. 47.
    Qu J, Geng C, Lv S, Shao G, Ma S, Wu M (2015) Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim Acta 176:982–988CrossRefGoogle Scholar
  48. 48.
    Liu H, Wang M, Zhai D, Chen X, Zhang Z (2019) Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants. Carbon 155:223–232CrossRefGoogle Scholar
  49. 49.
    Wang M, Liu H, Zhai D, Chen X, Zhang Z (2019) In-situ synthesis of highly nitrogen, sulfur co-doped carbon nanosheets from melamine-formaldehyde-thiourea resin with improved cycling stability and energy density for supercapacitors. J Power Sources 416:79–88CrossRefGoogle Scholar
  50. 50.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  51. 51.
    Zhai DD, Liu H, Wang M, Wu D, Chen XY, Zhang ZJ (2019) Integrating surface functionalization and redox additives to improve surface reactivity for high performance supercapacitors. Electrochim Acta 323:134810CrossRefGoogle Scholar
  52. 52.
    Sun X, Xu D, Hu W, Chen X (2017) Template synthesis of 2D carbon nanosheets: Improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI. ACS Sustain Chem Eng 5:5972–5981CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhong Jie Zhang
    • 1
    Email author
  • Bing Han
    • 1
  • Kun Yang Zhao
    • 1
  • Ming Hui Gao
    • 1
  • Zhen Qiang Wang
    • 1
  • Xin Ming Yang
    • 2
  • Xiang Ying Chen
    • 2
    • 3
    Email author
  1. 1.School of Chemistry & Chemical Engineering, Anhui Province Key Laboratory of Environment-friendly Polymer MaterialsAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Anhui Province Key Laboratory of Green Manufacturing of Power BatteryTianneng Battery Group (Anhui Company)JieshouPeople’s Republic of China
  3. 3.School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations