Skip to main content
Log in

A facile precipitation-freeze drying route synthesis of prismatic-like LiMn2O4 with improved electrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Prismatic-like LiMn2O4 (LMO-P) cathode material was successfully synthesized via precipitation-freeze drying route. Polyethylene glycol 20000 (PEG 20000) was used as a surfactant. Physical and electrochemical performances of prismatic-like LiMn2O4 were investigated. The results confirm that prismatic-like LiMn2O4 exhibited better electrochemical performance: the discharge capacities were 125.8 (0.1 C), 116.7 (0.5 C), 110.7 (1.0 C), 103.5 (2.0 C), 93.1 (5.0 C), and 75.3 (10 C) mAh g−1, respectively. The capacity was 90.2 mAh g−1 at 2.0 C-rate over 500 cycles with capacity retention of 87.1%. Prismatic-like LiMn2O4 had a high discharge capacity, outstanding rate performance, and stability. It is concluded that the facile precipitation-freeze drying route with PEG 20000 as surfactant is a promising route for preparation of LiMn2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pasquier A, Plitz I, Menocal S, Amatucci G (2003) A comparative study of Li-ion battery, super capacitor and non-aqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178

    Google Scholar 

  2. Mulder G, Omar N, Pauwels S, Meeus M, Leemans F, Verbrugge B, Nijs WD, Bossche PV, Six D, Mierlo JV (2013) Comparison of commercial battery cells in relation to material properties. Electrochim Acta 87:473–488

    CAS  Google Scholar 

  3. Eddahech A, Briat O, Vinassa J (2013) Lithium-ion battery performance improvement based on capacity recovery exploitation. Electrochim Acta 114:750–757

    CAS  Google Scholar 

  4. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H (2009) Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett 20099:1045–1051

    Google Scholar 

  5. Xiao Z, Zhou Y, Song L, Zhang F, Gao J, Zeng J, Cao Z (2014) Thermalelectrochemical behaviors of LiMn2O4 lithium-ion cell studied by electrochemical-calorimetric method. J Alloys Compd 592:226–230

    CAS  Google Scholar 

  6. Zhang C, Liu X, Su Q, Wu J, Huang T, Yu A (2017) Enhancing electrochemical performance of LiMn2O4 cathode material at elevated temperature by uniform nano-sized TiO2 coating. ACS Sustain Chem Eng 5:640–647

    CAS  Google Scholar 

  7. Rodriguez RA, Perez-Cappe EL, Laffita YM, Ardanza AC, Salazar JS, Santos MA, Frutis MAA, Mohalem NDS, Alves OL (2018) Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect. Solid State Ionics 324:77–86

    CAS  Google Scholar 

  8. Kebede MA, Kunjuzwa N, Jafta CJ, Mathe MK, Ozoemena KI (2014) Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2-xO4 0≤x≤02) for lithium ion battery: enhancing energy storage, capacity retention, and lithium ion transport. Electrochim Acta 128:172–177

    CAS  Google Scholar 

  9. Yang S, Schmidt DO, Khetan A, Schrader F, Jakobi S, Homberger M, Noyong M, Paulus A, Kungl H, Eichel RA (2018) Electrochemical and electronic charge transport properties of Ni-doped LiMn2O4 spinel obtained from polyol-mediated synthesis. Materials 11:806

    PubMed Central  Google Scholar 

  10. Peng Z, Li Y, Du K, Cao Y, Hu G (2017) Improved elevated temperature performance of spinel LiMn2O4 via surface-modified by Li-rich Li12Ni02Mn06O2 for lithium-ion batteries. J Alloys Compd 728:1209–1216

    CAS  Google Scholar 

  11. Tang M, Yuan A, Xu J (2015) Synthesis of highly crystalline LiMn2O4/multiwalled carbon nanotube composite material with high performance as lithium-ion battery cathode via an improved two-step approach. Electrochim Acta 166:244–252

    CAS  Google Scholar 

  12. Mu K, Cao Y, Hu G, Du K, Yang H, Gan Z, Peng Z (2018) Enhanced electrochemical performance of Li-rich cathode Li12Ni02Mn06O2 by surface modification with WO3 for lithium ion batteries. Electrochim Acta 273:88–97

    CAS  Google Scholar 

  13. Xu W, Li Q, Guo J, Bai H, Su C, Ruan R, Peng J (2016) Electrochemical evaluation of LiZnxMn2−xO4 (x≤0.10) cathode material synthesized by solution combustion method. Ceram Int 42:5693–5698

    CAS  Google Scholar 

  14. Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Synthesis and characterization of 5 V insertion material of Li [FeyMn2−y]O4 for lithium-ion batteries. Electrochim Acta 46:2327–2336

    CAS  Google Scholar 

  15. Li Q, Xu W, Bai H, Guo J, Su C (2016) ZnO-coated LiMn2O4 cathode material for lithium-ion batteries synthesized by a combustion method. Ionics 22:1343–1351

    CAS  Google Scholar 

  16. Patey TJ, Buchel R, Nakayama M, Novak P (2009) Electrochemistry of LiMn2O4 nanoparticles made by flame spray pyrolysis. Phys Chem Chem Phys 11:3756–3761

    CAS  PubMed  Google Scholar 

  17. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H (2009) Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett 9:1045–1051

    CAS  PubMed  Google Scholar 

  18. Xia H, Ragavendran KR, Xie J, Lu L (2012) Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J Power Sources 212:28–34

    CAS  Google Scholar 

  19. Ding YL, Xie J, Cao GS, Zhu TJ, Yu HM, Zhao XB (2011) Single-crystalline LiMn2O4 nanotubes synthesized via template engaged reaction as cathodes for high-power lithium ion batteries. Adv Funct Mater 21:348–355

    CAS  Google Scholar 

  20. Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:1159–1162

    CAS  Google Scholar 

  21. Yang Y, Xie C, Ruffo R, Peng H, Kim DK, Cui Y (2009) Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett 9:4109–4114

    CAS  PubMed  Google Scholar 

  22. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952

    CAS  PubMed  Google Scholar 

  23. Chen P, Wu H, Huang S, Zhang Y (2016) Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials. Ceram Int 42:10498–10505

    CAS  Google Scholar 

  24. Zou Z, Li Z, Zhang H, Wang X, Jiang C (2016) Copolymerization-assisted preparation of porous LiMn2O4 hollow microspheres as high power cathode of lithium-ion batteries. J Mater Sci Technol 33:781–787

    Google Scholar 

  25. Sun W, Cao F, Liu Y, Zhao X, Liu XG, Yuan J (2012) Nanoporous LiMn2O4 nanosheets with exposed {1 1 1} facets as cathodes for highly reversible lithium-ion batteries. J Mater Chem 22(39):20952–20957

    CAS  Google Scholar 

  26. Tan XH, Liu HQ, Jiang Y, Liu GY, Guo YJ, Wang HF, Sun LF, Chu WG (2016) Graphite assisted synthesis of nanoparticles interconnected porous two-dimensional LiMn2O4 nanoplates with superior performance. J Power Sources 328:345–354

    CAS  Google Scholar 

  27. Lin HB, Hu JN, Rong HB, Zhang YM, Mai SW, Xing LD, Xu MQ, Li XP, Li WS (2014) Porous LiMn2O4 cubes architectured with single-crystalline nano-particles and exhibiting excellent cyclic stability and rate capability as the cathode of a lithium ion battery. J Mater Chem A 2:9272–9279

    CAS  Google Scholar 

  28. Li X, Shao Z, Liu K, Liu G, Xu B (2018) Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J Electroanal Chem 818:204–209

    CAS  Google Scholar 

  29. Tang W, Wang XJ, Hou YY, Li LL, Sun H, Zhu YS, Bai Y, Wu YP, Zhu K, Van Ree T (2012) Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J Power Sources 198:308–311

    CAS  Google Scholar 

  30. Wu K, Du K, Hu G (2018) Red-blood-cell-like (NH4)[Fe2(OH)(PO4)2]·2H2O particles: fabrication and application in high-performance LiFePO4 cathode materials. J Mater Chem A 6:1057–1066

    CAS  Google Scholar 

  31. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952

    CAS  PubMed  Google Scholar 

  32. Xia H, Wang H, Xiao W, Lu L, Lai MO (2009) Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries. J Alloys Compd 480:696–701

    CAS  Google Scholar 

  33. Wu K, Hu G, Peng Z, Cao Y, Du K (2016) In situ green synthesis of MnFe2O4/reduced graphene oxide nanocomposite and its usage for fabricating high-performance LiMn1/3Fe2/3PO4/reduced graphene oxide/carbon cathode material for Li-ion batteries. Electrochim Acta 196:252–260

    CAS  Google Scholar 

  34. Wu K, Yang H, Jia L, Pan Y, Hao Y, Zhang K, Du K, Hu G (2019) Smart construction of 3D N-doped graphene honeycombs with (NH4)2SO4 as a multifunctional template for Li-ion battery anode: “a choice serves three purposes”. Green Chem 21:1472–1483

    CAS  Google Scholar 

  35. Yang H, Wu K, Hu G, Peng Z, Cao Y, Du K (2019) Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at upper cutoff voltage. ACS Appl Mater Interfaces 11(8):8556–8566

    CAS  PubMed  Google Scholar 

  36. Zhao HY, Li F, Liu XQ, Xiong WQ, Chen B, Shao HL, Que DY, Zhang Z, Wu Y (2015) A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochim Acta 166:124–133

    CAS  Google Scholar 

  37. Jiang RY, Cui CY, Ma HY, Ma HF, Chen T (2015) Study on the enhanced electrochemical performance of LiMn2O4 cathode material at 55 °C by the nano Ag-coating. J Electroanal Chem 744:69–76

    CAS  Google Scholar 

  38. Han CG, Zhu CY, Saito G, Akiyama T (2015) Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries. Adv Powder Technol 26:665–671

    CAS  Google Scholar 

  39. Hwang BM, Kim SJ, Lee YW, Park HC, Kim DM, Park KW (2015) Truncated octahedral LiMn2O4 cathode for high-performance lithium-ion batteries. Mater Chem Phys 158:138–143

    CAS  Google Scholar 

  40. Cai YJ, Huang YD, Wang XC, Jia DZ, Pang WK, Guo ZP, Du YP, Tang XC (2015) Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J Power Sources 278:574–581

    CAS  Google Scholar 

  41. Wang HQ, Lai FY, Li Y, Zhang XH, Huang YG, Hu SJ, Li QY (2015) Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim Acta 177:290–297

    CAS  Google Scholar 

  42. Lee Y, Kim TY, Kim DW, Lee JK, Choi W (2015) Coating of spinel LiNi05Mn15O4 cathodes with SnO2 by an electron cyclotron resonance metal-organic chemical vapor deposition method for high-voltage applications in lithium ion batteries. J Electroanal Chem 736:16–21

    CAS  Google Scholar 

  43. Yu Y, Xiang M, Guo J, Su C, Liu X, Bai H, Bai W, Duan K (2019) Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries. J Colloid Interface Sci 555(1):64–71

    CAS  PubMed  Google Scholar 

  44. Han B, Meng XD, Ma L, Nan JY (2016) Nitrogen-doped carbon decorated LiFePO4 composite synthesized via a microwave heating route using polydopamine as carbon-nitrogen precursor. Ceram Int 42:2789–2797

    CAS  Google Scholar 

  45. Jiang Q, Liu D, Zhang H, Wang S (2015) Plasma-assisted sulfur doping of LiMn2O4 for high-performance lithium ion batteries. J Phys Chem C 119(52):28776–28782

    CAS  Google Scholar 

  46. Jiang Q, Zhang H, Wang S (2016) Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn2O4 with superior performance for lithium-ion batteries [J]. Green Chem 18:662–666

    CAS  Google Scholar 

  47. Zhou X, Chen M, Bai H, Su C, Feng L, Guo J (2016) Preparation and electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis. Vaccum 99:49–55

    CAS  Google Scholar 

  48. Lv X, Chen S, Chen C, Liu L, Liu F, Qiu G (2014) One-step hydrothermal synthesis of LiMn2O4 cathode materials for rechargeable lithium batteries. Solid State Sci 31:16–23

    CAS  Google Scholar 

  49. Wan C, Wu M, Wu D (2010) Synthesis of spherical LiMn2O4 cathode material by dynamic sintering of spray-dried precursors. Powder Technol 199(2):154–158

    CAS  Google Scholar 

  50. Guo DL, Wei XG, Chang ZR, Tang HW, Li B, Shangguan E, Chang K, Yuan XZ, Wang HJ (2015) Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries. J Alloys Compd 632:222–228

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetian Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, L., Zhang, Y. et al. A facile precipitation-freeze drying route synthesis of prismatic-like LiMn2O4 with improved electrochemical performance. Ionics 26, 1591–1598 (2020). https://doi.org/10.1007/s11581-019-03371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03371-0

Keywords

Navigation