Advertisement

Ionics

pp 1–11 | Cite as

Cobalt oxide nanocomposites modified by NiCo-layered double hydroxide nanosheets as advanced electrodes for supercapacitors

  • Xiaoqiang Dai
  • Yatang DaiEmail author
  • Jinghua LuEmail author
  • Linyu Pu
  • Wei Wang
  • Jie Jin
  • Fei Ma
  • Ning Tie
Original Paper
  • 40 Downloads

Abstract

Transition metal oxides with metallic composites are attractive for advanced electrodes due to their high capacitance, high conductivity, and low cost. Here, a multihierarchical structure (NiCo LDH/M Co3O4, M is the mass of Co3O4) of NiCo-layered double hydroxide (NiCo LDH) nanosheets uniformly grown on the surface cobalt oxide (Co3O4) is synthesized via a mild hydrothermal method. In particular, the NiCo LDH/50 mg Co3O4 nanocomposite material has the advantages of large specific surface area, wealthy aperture, high pseudo-capacitance, and small internal resistance. Electrochemical investigation reveals that the NiCo LDH/50 mg Co3O4 is rather outstanding, which delivers high energy density, long-life supercapacitor as a positive electrode material. It is worth mentioning that the specific surface area and specific capacitance of NiCo LDH/50 mg Co3O4 are threefolds and fivefolds that of pure Co3O4, respectively. The specific capacitance of NiCo LDH/50 mg Co3O4 is 1393.9 F g−1 at 1 A g−1 with outstanding cycle stability (88.4% up to 5000 cycles). The aqueous asymmetric supercapacitor (ASC) was assembled by employing the NiCo LDH/50 mg Co3O4 as positive electrode and activated carbon (AC) as negative electrode, which delivers a voltage window of 1.5 V and a high energy density of 46.4 Wh kg−1 at a power density of 750.4 W kg−1. These excellent properties make it a promising candidate in electrochemical energy storage materials.

Keywords

NiCo LDH Co3O4 Nanocomposite Supercapacitor 

Notes

Acknowledgments

Also we are grateful for the help of Analytical and Testing Center of Southwest University of Science and Technology.

Funding information

This work was supported by the Key Science Program Funded by the Education Department of Sichuan Province (No. 15ZA0117), SWUST Longshan Academic Talent Research Support Program (No. 18lzx403) and the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 18fksy0207).

Supplementary material

11581_2019_3333_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 4319 kb)

References

  1. 1.
    Wei X, Peng H, Li Y, Yang Y, Xiao S, Peng L, Zhang Y, Xiao P (2018) In situ growth of zeolitic imidazolate framework-67-derived nanoporous carbon@K0.5Mn2O4 for high-performance 2.4 V aqueous asymmetric supercapacitors. ChemSusChem 11(18):3167–3174PubMedCrossRefGoogle Scholar
  2. 2.
    Li T, Jiao X, You T, Dai F, Zhang P, Yu F, Hu L, Ding L, Zhang L, Wen Z, Wu Y (2019) Hexagonal boron nitride nanosheet/carbon nanocomposite as a high-performance cathode material towards aqueous asymmetric supercapacitors. Ceram Int 45(4):4283–4289CrossRefGoogle Scholar
  3. 3.
    Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y (2019) N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater 20:225–233CrossRefGoogle Scholar
  4. 4.
    Zhou Y, Zhu Y, Xu B, Zhang X (2019) High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors. Chem Commun (Camb) 55(28):4083–4086CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Zhu Y, Xue D, Xu B (2018) A nitrogen-doped 3D open-structured graphite nanofiber matrix for high-performance supercapacitors. J Mater Chem A 6(29):14065–14068CrossRefGoogle Scholar
  6. 6.
    Zhou Y, Jin P, Zhou Y, Zhu Y (2017) Carbon nanospheres hanging on carbon nanotubes: a hierarchical three-dimensional carbon nanostructure for high-performance supercapacitors. J Mater Chem A 5(32):16595–16599CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Jin P, Zhou Y (2016) Synthesis of carbon-encapsulated cobalt sulfide nanoparticles and their electrochemical property. Ionics 22(11):2239–2243CrossRefGoogle Scholar
  8. 8.
    Chen T, Tang Y, Qiao Y, Liu Z, Guo W, Song J, Mu S, Yu S, Zhao Y, Gao F (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rep 6:23289PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Qi K, Hou R, Zaman S, Qiu Y, Xia BY, Duan H (2018) Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl Mater Interfaces 10(21):18021–18028PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Y, Lin B, Wang J, Han P, Xu T, Sun Y, Zhang X, Yang H (2016) Polyoxometalates@metal-organic frameworks derived porous MoO3@CuO as electrodes for symmetric all-solid-state supercapacitor. Electrochim Acta 191:795–804CrossRefGoogle Scholar
  11. 11.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88PubMedCrossRefGoogle Scholar
  12. 12.
    Yuanlong S, El-Kady MF, Jingyu S, Yaogang L, Qinghong Z, Meifang Z, Hongzhi W, Bruce D, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(118):9233–9280Google Scholar
  13. 13.
    Deng J, Kang L, Bai G, Ying L, Li P, Liu X, Yang Y, Feng G, Wei L (2014) Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim Acta 132(19):127–135CrossRefGoogle Scholar
  14. 14.
    Yao T, Guo X, Qin S, Xia F, Li Q, Li Y, Chen Q, Li J, He D (2017) Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett 9(4):45–52CrossRefGoogle Scholar
  15. 15.
    Kong D, Luo J, Wang Y, Ren W, Yu T, Luo Y, Yang Y, Cheng C (2014) Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage. Adv Funct Mater 24(24):3815–3826CrossRefGoogle Scholar
  16. 16.
    Liu S, Shackery I, Patil UM, Su CL, Park B, An HB, Chung KY, Jun SC (2016) Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J Mater Chem A 5(3):1043–1049CrossRefGoogle Scholar
  17. 17.
    Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419CrossRefGoogle Scholar
  18. 18.
    Xiaomei L, Yuqing Q, Chenhuan W, Tongde S, Xiaoyu Z, Hongchao W, Yanshuai L, Weimin G (2019) MOF-derived Co/C nanocomposites encapsulated by Ni(OH)2 ultrathin nanosheets shell for high performance supercapacitors. J Alloys Compd 770(770):803–812Google Scholar
  19. 19.
    Usov PM, Mcdonnell-Worth C, Zhou F, Macfarlane DR, D’Alessandro DM (2015) The electrochemical transformation of the zeolitic imidazolate framework ZIF-67 in aqueous electrolytes. Electrochim Acta 153:433–438CrossRefGoogle Scholar
  20. 20.
    Wu M, Hong Y, Zang X, Dong X (2016) ZIF-67 derived Co3O4/rGO electrodes for electrochemical detection of H2O2 with high sensitivity and selectivity. ChemistrySelect 1(18):5727–5732CrossRefGoogle Scholar
  21. 21.
    Xu J, Liu S, Liu Y (2016) Co3O4/ZnO nanoheterostructure derived from core-shell ZIF-8@ZIF-67 for supercapacitors. RSC Adv 6(57):52137–52142CrossRefGoogle Scholar
  22. 22.
    Wei G, Zhen Z, Zhao X, Zhang W, An C (2018) Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors. ACS Appl Mater Interfaces 10(28):23721–23730PubMedCrossRefGoogle Scholar
  23. 23.
    Dong YY, Wang Y, Xu YN, Chen CC, Wang YJ, Jiao LF, Yuan FT (2016) Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor. Electrochim Acta 225:39–46CrossRefGoogle Scholar
  24. 24.
    Hao C, Hu L, Min C, Yan Y, Wu L (2014) Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942CrossRefGoogle Scholar
  25. 25.
    Williams GR, O'Hare D (2006) Towards understanding, control and application of layered double hydroxide chemistry. Cheminform 16(30):3065–3074Google Scholar
  26. 26.
    Hu ZA, Xie YL, Wang YX, Wu HY, Yang YY, Zhang ZY (2009) Synthesis and electrochemical characterization of mesoporous CoxNix layered double hydroxides as electrode materials for supercapacitors. Electrochim Acta 54(10):2737–2741CrossRefGoogle Scholar
  27. 27.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614CrossRefGoogle Scholar
  28. 28.
    Chen W, Wang J, Ma KY, Li M, Guo SH, Liu F, Cheng JP (2018) Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Appl Surf Sci 451:280–288CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Du D, Li X, Sun H, Li L, Bai P, Xing W, Xue Q, Yan Z (2017) Electrostatic self-assembly of sandwich-like CoAl-LDH/polypyrrole/graphene nanocomposites with enhanced capacitive performance. ACS Appl Mater Interfaces 9(37):31699–31709PubMedCrossRefGoogle Scholar
  30. 30.
    Xu J, Gai S, He F, Niu N, Gao P, Chen Y, Yang P (2013) A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. J Mater Chem A 2(4):1022–1031CrossRefGoogle Scholar
  31. 31.
    Jin H, Yuan D, Zhu S, Zhu X, Zhu J (2018) Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors. Dalton Trans 47(26):8706–8715PubMedCrossRefGoogle Scholar
  32. 32.
    Liang H, Lin J, Jia H, Chen S, Qi J, Cao J, Lin T, Fei W, Feng J (2018) Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J Power Sources 378:248–254CrossRefGoogle Scholar
  33. 33.
    Niu H, Zhang Y, Liu Y, Xin N, Shi W (2019) NiCo-layered double-hydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors. J Colloid Interface Sci 539:545–552PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Q, Hu R, Qi J, Sui Y, He Y, Meng Q, Wei F, Ren Y (2019) Facile synthesis of NiCoP nanosheets on carbon cloth and their application as positive electrode material in asymmetric supercapacitor. Ionics.  https://doi.org/10.1007/s11581-019-03174-3
  35. 35.
    Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K, Wei J, Yan Q, Feng XQ, Long Y, Wang L, Huang Y (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10(10):1932–1938PubMedCrossRefGoogle Scholar
  36. 36.
    Wei X, Li Y, Peng H, Gao D, Ou Y, Yang Y, Hu J, Zhang Y, Xiao P (2019) A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application. Chem Eng J 355:336–340CrossRefGoogle Scholar
  37. 37.
    Bai X, Liu Q, Lu Z, Liu J, Chen R, Li R, Song D, Jing X, Liu P, Wang J (2017) Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal–organic framework for sustainable energy storage. ACS Sustain Chem Eng 5(11):9923–9934CrossRefGoogle Scholar
  38. 38.
    Cao F, Gan M, Ma L, Li X, Yan F, Ye M, Zhai Y, Zhou Y (2017) Hierarchical sheet-like Ni-Co layered double hydroxide derived from a MOF template for high-performance supercapacitors. Synth Met 234:154–160CrossRefGoogle Scholar
  39. 39.
    Lin C, Ritter JA, Popov BN (1998) Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J Electrochem Soc 145(12):4097–4103CrossRefGoogle Scholar
  40. 40.
    Chodankar NR, Dubal DP, Kwon Y, Kim D-H (2017) Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Mater 9(8):e419CrossRefGoogle Scholar
  41. 41.
    Quan W, Jiang C, Wang S, Li Y, Zhang Z, Tang Z, Favier F (2017) New nanocomposite material as supercapacitor electrode prepared via restacking of Ni-Mn LDH and MnO2 nanosheets. Electrochim Acta 247:1072–1079CrossRefGoogle Scholar
  42. 42.
    Jia H, Wang Z, Zheng X, Lin J, Liang H, Cai Y, Qi J, Jian C, Feng J, Fei W (2018) Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem Eng J 351:348–355CrossRefGoogle Scholar
  43. 43.
    Chen Z, Xiong DB, Zhang X, Ma H, Xia M, Zhao Y (2016) Construction of a novel hierarchical structured NH(4)-Co-Ni phosphate toward an ultrastable aqueous hybrid capacitor. Nanoscale 8(12):6636–6645PubMedCrossRefGoogle Scholar
  44. 44.
    Wang M, Zhao Y, Zhang X, Qi R, Shi S, Li Z, Wang Q, Zhao Y (2018) Interface-rich core-shell ammonium nickel cobalt phosphate for high-performance aqueous hybrid energy storage device without a depressed power density. Electrochim Acta 272:184–191CrossRefGoogle Scholar
  45. 45.
    Wang M, Jin F, Zhang X, Wang J, Huang S, Zhang X, Mu S, Zhao Y, Zhao Y (2017) Multihierarchical structure of hybridized phosphates anchored on reduced graphene oxide for high power hybrid energy storage devices. ACS Sustain Chem Eng 5(7):5679–5685CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.School of ScienceSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations