MOF-derived CoS2 porous nanocubes assembled on graphene oxide nanosheets as electrode for supercapacitor applications
Short Communication
First Online:
- 22 Downloads
Abstract
MOF (Co3[Fe(CN)6]2)-derived porous nanocube-like CoS2 is coupled with GO via solution-precipitation and chemical replacement method. Due to the proper loading and structure adjusting of CoS2, the prepared nanocomposites show a maximum specific capacitance of 842 F g−1 at 0.5 A g−1, high-rate stability (capacity retention of 77% from 0.5 up to 10 A g−1), and long-cycle life stability (capacity retention of 95% over 2000 cycles).
Keywords
Nanocomposites Nanocube Graphene oxide Supercapacitor Electrochemical performanceNotes
Supplementary material
References
- 1.Bao L, Li T, Chen S, Li L, Xu Q, Chen Y, Xu W (2017) 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13:1602077CrossRefGoogle Scholar
- 2.Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325CrossRefGoogle Scholar
- 3.Zhang Z, Liu X, Qi X, Huang Z, Ren L, Zhong J (2014) Hydrothermal synthesis of Ni3S2/graphene electrode and its application in a supercapacitor. RSC Adv 4:37278–37283CrossRefGoogle Scholar
- 4.Chen S, Xing W, Duan J, Hu X, Qiao SZ (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954CrossRefGoogle Scholar
- 5.Li J, Chen D, Wu Q (2019) Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials. J Energy Storage 23:511–514CrossRefGoogle Scholar
- 6.Yunling L, Eubank JF, Cairns AJ, Juergen E, Victorch K, Ryan L, Mohamed E (2010) Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed 46:3278–3283Google Scholar
- 7.Vaidhyanathan R, Iremonger S, Dawson K, Shimizu GH (2009) An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem Commun 35:5230–5235CrossRefGoogle Scholar
- 8.Ramachandran R, Felix S, Saranya M, Sathosh C, Ragupathy B, Jeong S, Grace A (2013) Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans Nanotechnol PP: 1-1.Google Scholar
- 9.Sarkar A, Chakraborty AK, Bera S, Krishnamurthy S (2018) Novel hydrothermal synthesis of CoS2/MWCNT nanohybrid electrode for supercapacitor: a systematic investigation on the influence of MWCNT. J Phys Chem C 122:18237–18246CrossRefGoogle Scholar
- 10.Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang L, Cao X, Lu Q, Zhang X, Zhang Z (2016) Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc 138:6924CrossRefGoogle Scholar
- 11.Jin M, Lu SY, Ma L, Gan MY, Lei Y, Zhang XL, Fu G, Yang PS, Yan MF (2017) Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors. J Power Sources 341:294–301CrossRefGoogle Scholar
- 12.Hu X, Li J, Wu Q, Wang X (2019) MOF-derived Ni(OH)2 nanocubes/GO for high-performance supercapacitor. ChemistrySelect 4:7922–7926CrossRefGoogle Scholar
- 13.Fan Z, Yan J, Tong W, Zhi L, Ning G, Li T, Fei W (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375CrossRefGoogle Scholar
- 14.Li J, Huang S, Gu J, Wu QS, Chen DD, Zhou CC (2019) Facile synthesis of well-dispersed Bi2O3 nanoparticles and rGO as negative electrode for supercapacitor. J Nanopart Res 21:56CrossRefGoogle Scholar
- 15.Kerisit S, Schwenzer B, Vijayakumar M (2014) Effects of oxygen-containing functional groups on supercapacitor performance. J Phys Chem Lett 5:2330CrossRefGoogle Scholar
- 16.Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS (2017) Activating cobalt nanoparticles via the Mott-Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J Am Chem Soc 139:811–818CrossRefGoogle Scholar
- 17.Luo P, Zhang H, Liu L, Zhang Y, Deng J, Xu C, Hu N, Wang Y (2017) Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the applications for the enhanced water splitting system. ACS Appl Mater Interfaces 9:2500–2508CrossRefGoogle Scholar
- 18.Paraknowitsch JP, Wienert B, Zhang Y, Thomas A (2012) Intrinsically sulfur- and nitrogen-co-doped carbons from thiazolium salts. Chemistry 18:15416–15423CrossRefGoogle Scholar
- 19.Yan SX, Luo SH, Feng J, Li PW, Guo R, Wang Q, Zhang YH, Liu YG, Bao S (2020) Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem Eng J 381:122695CrossRefGoogle Scholar
- 20.Liu H, Luo SH, Hu DB, Liu X, Wang Q, Wang ZY, Wang YL, Chang LJ, Liu YG, Yi TF (2019) Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Appl Surf Sci 495:143590CrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019