pp 1–6 | Cite as

MOF-derived CoS2 porous nanocubes assembled on graphene oxide nanosheets as electrode for supercapacitor applications

  • Xinran Hu
  • Jiangfeng LiEmail author
  • Qingsheng Wu
  • Rui ChenEmail author
Short Communication


MOF (Co3[Fe(CN)6]2)-derived porous nanocube-like CoS2 is coupled with GO via solution-precipitation and chemical replacement method. Due to the proper loading and structure adjusting of CoS2, the prepared nanocomposites show a maximum specific capacitance of 842 F g−1 at 0.5 A g−1, high-rate stability (capacity retention of 77% from 0.5 up to 10 A g−1), and long-cycle life stability (capacity retention of 95% over 2000 cycles).


Nanocomposites Nanocube Graphene oxide Supercapacitor Electrochemical performance 


Supplementary material

11581_2019_3331_MOESM1_ESM.doc (864 kb)
ESM 1 (DOC 863 kb)


  1. 1.
    Bao L, Li T, Chen S, Li L, Xu Q, Chen Y, Xu W (2017) 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13:1602077CrossRefGoogle Scholar
  2. 2.
    Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325CrossRefGoogle Scholar
  3. 3.
    Zhang Z, Liu X, Qi X, Huang Z, Ren L, Zhong J (2014) Hydrothermal synthesis of Ni3S2/graphene electrode and its application in a supercapacitor. RSC Adv 4:37278–37283CrossRefGoogle Scholar
  4. 4.
    Chen S, Xing W, Duan J, Hu X, Qiao SZ (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954CrossRefGoogle Scholar
  5. 5.
    Li J, Chen D, Wu Q (2019) Facile synthesis of CoS porous nanoflake for high performance supercapacitor electrode materials. J Energy Storage 23:511–514CrossRefGoogle Scholar
  6. 6.
    Yunling L, Eubank JF, Cairns AJ, Juergen E, Victorch K, Ryan L, Mohamed E (2010) Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew Chem Int Ed 46:3278–3283Google Scholar
  7. 7.
    Vaidhyanathan R, Iremonger S, Dawson K, Shimizu GH (2009) An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem Commun 35:5230–5235CrossRefGoogle Scholar
  8. 8.
    Ramachandran R, Felix S, Saranya M, Sathosh C, Ragupathy B, Jeong S, Grace A (2013) Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans Nanotechnol PP: 1-1.Google Scholar
  9. 9.
    Sarkar A, Chakraborty AK, Bera S, Krishnamurthy S (2018) Novel hydrothermal synthesis of CoS2/MWCNT nanohybrid electrode for supercapacitor: a systematic investigation on the influence of MWCNT. J Phys Chem C 122:18237–18246CrossRefGoogle Scholar
  10. 10.
    Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang L, Cao X, Lu Q, Zhang X, Zhang Z (2016) Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc 138:6924CrossRefGoogle Scholar
  11. 11.
    Jin M, Lu SY, Ma L, Gan MY, Lei Y, Zhang XL, Fu G, Yang PS, Yan MF (2017) Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors. J Power Sources 341:294–301CrossRefGoogle Scholar
  12. 12.
    Hu X, Li J, Wu Q, Wang X (2019) MOF-derived Ni(OH)2 nanocubes/GO for high-performance supercapacitor. ChemistrySelect 4:7922–7926CrossRefGoogle Scholar
  13. 13.
    Fan Z, Yan J, Tong W, Zhi L, Ning G, Li T, Fei W (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375CrossRefGoogle Scholar
  14. 14.
    Li J, Huang S, Gu J, Wu QS, Chen DD, Zhou CC (2019) Facile synthesis of well-dispersed Bi2O3 nanoparticles and rGO as negative electrode for supercapacitor. J Nanopart Res 21:56CrossRefGoogle Scholar
  15. 15.
    Kerisit S, Schwenzer B, Vijayakumar M (2014) Effects of oxygen-containing functional groups on supercapacitor performance. J Phys Chem Lett 5:2330CrossRefGoogle Scholar
  16. 16.
    Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS (2017) Activating cobalt nanoparticles via the Mott-Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J Am Chem Soc 139:811–818CrossRefGoogle Scholar
  17. 17.
    Luo P, Zhang H, Liu L, Zhang Y, Deng J, Xu C, Hu N, Wang Y (2017) Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the applications for the enhanced water splitting system. ACS Appl Mater Interfaces 9:2500–2508CrossRefGoogle Scholar
  18. 18.
    Paraknowitsch JP, Wienert B, Zhang Y, Thomas A (2012) Intrinsically sulfur- and nitrogen-co-doped carbons from thiazolium salts. Chemistry 18:15416–15423CrossRefGoogle Scholar
  19. 19.
    Yan SX, Luo SH, Feng J, Li PW, Guo R, Wang Q, Zhang YH, Liu YG, Bao S (2020) Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem Eng J 381:122695CrossRefGoogle Scholar
  20. 20.
    Liu H, Luo SH, Hu DB, Liu X, Wang Q, Wang ZY, Wang YL, Chang LJ, Liu YG, Yi TF (2019) Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Appl Surf Sci 495:143590CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of EcologyLishui UniversityLishuiPeople’s Republic of China
  2. 2.School of Chemical Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations