pp 1–8 | Cite as

Epigallocatechin gallate (EGCG)–assisted combustion synthesis of V2O5 nanoparticles for Li-ion battery

  • Udayabhanu
  • V. Pavitra
  • S. C. Sharma
  • G. NagarajuEmail author
Original Paper


Nanometric orthorhombic vanadium pentoxide (V2O5) cathode has been fabricated via a facile simple and single step combustion method by the utilization of Epigallocatechin gallate (EGCG) tea extract fuel in order to tailor the optimized electrochemical properties. Structural and surface morphologies of V2O5 nanoparticles (NPs) are examined by XRD, Raman spectroscopy, TGA, SEM, and HRTEM. The electrochemical performance of synthesized V2O5 NPs has studied towards the lithium-ion batteries (LIBs). Various parameters like charge-discharge, cyclic voltammogram (CV) columbic efficiency, and rate capability are studied. The nanometer V2O5 particles show the reversible capacity of 222 mA h g−1 after 50 cycles. The formation of lithium intercalation compound (LiV2O5) was confirmed by ex situ XRD studies after the continuous 50 charge/discharge cycles as the proof of stability. V2O5 cathode has performed stable performance by the electrochemical analysis.

Graphical abstract


EGCG Combustion Vanadium pentoxide Li-ion battery 


Funding information

This study was financially supported by the DST-SERB (Ref. No. SB/FT/CS-083/2012) and DST Nanomission (SR/NM/NS-1262(2013)), Govt. of India, New Delhi, which carried out the research work.


  1. 1.
    Schoiswohl J, Surnev S, Netzer FP, Kresse G (2006) Vanadium oxide nanostructure: from zero to three-dimensional. J Phys Condens Matter 18:R1–R14CrossRefGoogle Scholar
  2. 2.
    Jun L, Hui X, Dongfeng X, Li L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131:12086–12087CrossRefGoogle Scholar
  3. 3.
    Michael ES, Petra B, Reinhard N, Martin M, Krumeich F, Hans UN (1998) Redox active nanotubes of vanadium oxide. Angew Chem Int Ed 37:1263–1265CrossRefGoogle Scholar
  4. 4.
    Jacques L (2010) hydrothermal synthesis of nanostructured vanadium oxides. Materials 3:4175–4195CrossRefGoogle Scholar
  5. 5.
    Manickam S, Nanda G, Masaki Y, Kenichi N (2012) V2O5 hollow nanospheres: a lithium intercalation host with good rate capability and capacity retention. J Electrochem Soc 159(5):A618–A621CrossRefGoogle Scholar
  6. 6.
    Yanwei L, Jinhuan Y, Evan U, Jianwen Y, Yunxia H, Ming Z, Guozhong C (2013) Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv Energy Mater:1–5Google Scholar
  7. 7.
    Ke F, Li Y, Zhang C, Zhu J, Chen P, Ju H, Xu Q, Zhu J (2018) MOG-derived porous FeCo/C nanocomposites as a potential platform for enhanced catalytic activity and lithium-ion batteries performance. J Colloid Interface Sci 522:283–290CrossRefGoogle Scholar
  8. 8.
    Jiu H, Na R, Jiang L, Zhang Q, Gao Y, Meng Y, Zhang L (2018) Hierarchical porous CoMn2O4 microspheres with sub-nanoparticles as advanced anode for high performance lithium-ion batteries. J Solid State Electrochem 22(9):2747–2755CrossRefGoogle Scholar
  9. 9.
    Poonam SS, Haram SS, Lawate PR, Kale LP, Patil AA, Lokhande PS (2015) Facile synthesis of vanadium pentoxide nanorod by hydrothermal route and their characterization. Int J Nano Chem 1(1):1–4Google Scholar
  10. 10.
    Jagadeesh A, Mimani Rattan T, Muralikrishna M, Venkataramaniah K (2014) Instant one step synthesis of crystalline nanoV2O5 by solution combustion method showing enhanced negative temperature coefficient of resistance. Mater Lett 121:133–136CrossRefGoogle Scholar
  11. 11.
    Wen C, Junfeng P, Liqiang M, Quanyao Z, Qing X (2004) Synthesis of vanadium oxide nanotubes from V2O5 sols. Mater Lett 58:2275–2278CrossRefGoogle Scholar
  12. 12.
    Ng SH, Chew SY, Wang J, Wexler D, Tournayre Y, Konstantinov K, Liu HK (2007) Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. J Power Sources 174:1032–1035CrossRefGoogle Scholar
  13. 13.
    Katsunori T, Steven JL, Ying W, Guozhong C (2004) Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J Phys Chem 108:9795–9800CrossRefGoogle Scholar
  14. 14.
    Jin SK, Se hoon B, Woo YY (2010) Electrochemical behaviour of compacted lithium powder electrode in Li/V2O5 rechargeable battery. J Electrochem Soc 157(8):A984–A987CrossRefGoogle Scholar
  15. 15.
    Alves A, Bergmann CP, Beruti F (2013) A novel synthesis and characterization of natnostructured materials. IX 85 p.38 illus Hardcover ISBN: 978-3-642-41274-5Google Scholar
  16. 16.
    Suresh D, Udayabhanu, Nethravathi PC, Lingaraju K, Rajanaika H, Sharma SC, Nagabhushana H (2015) EGCG assisted green synthesis of ZnO nanopowders: photodegradative, antimicrobial and antioxidant activities. Spectrochim Acta A Mol Biomol Spectrosc 136:1467–1474CrossRefGoogle Scholar
  17. 17.
    Jayalakshmi M, Mohan Rao M, Venugopal N, Kwang-Bum K (2007) Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2– V2O5–CNT electrodes for supercapacitor applications. J Power Sources 166:578–583CrossRefGoogle Scholar
  18. 18.
    Vernardou D, Sapountzis A, Spanakis E, Kenanakis G, Koudoumas E, Katsarakis N (2013) Electrochemical activity of electrodeposited V2O5 coatings. J Electrochem Soc 160(1):D6–D9CrossRefGoogle Scholar
  19. 19.
    Abello L, Husson E, Repelin Y, Lucazeau G (1983) Vibrational spectra and valence force field of crystalline V2O5. Spectrochim Acta 39(7):641–651CrossRefGoogle Scholar
  20. 20.
    Dawei S, Guoxiu W (2013) Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7(12):11218–11226CrossRefGoogle Scholar
  21. 21.
    An QP, Hao BW, Lei Z, Xiong WL (David) (2013) Uniform V2O5 nanosheet-assembled hollow micro flowers with excellent lithium storage properties. Energy Environ Sci 6:1476-1479.Google Scholar
  22. 22.
    Xiang P, Xuming Z, Lei W, Liangsheng H, Samson Ho-Sum C, Chao H, Biao G, Fei M, Kaifu H, Paul KC (2016) Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv Funct Mater 26:784–791CrossRefGoogle Scholar
  23. 23.
    Yan LC, Vanchiappan A, Srinivasan M (2012) Electrochemical lithium insertion behavior of combustion synthesized V2O5 cathodes for lithium-ion batteries. J Electrochem Soc 159(3):A273–A280CrossRefGoogle Scholar
  24. 24.
    Qiang S, Hongchang P, Weitao G, Guiling N, Song G, Xinglong D, Chunjing L, Junying T, Yuan L (2014) Fabrication of nanostructured V2O5 via urea combustion for high performance Li-ion battery cathode. RSC Adv:1–5Google Scholar
  25. 25.
    Alamelu KR, Reddy MV, Nithyadharseni P, Chowdari BVR, Geetha RB (2016) Gel-combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries. J Alloys Compd S0925-8388:33263–33267Google Scholar
  26. 26.
    Xu M, Shan L, Fangchao W, Mingyao H, Quanwei W, Quanyao Z, Galina SZ (2016) Synthesis and electrochromic characterization of graphene/V2O5/MoO3 nanocomposite films. ECS J Solid State Sci Technol 5(10):P572–P577CrossRefGoogle Scholar
  27. 27.
    Maxim K, Vilas P, Aharon G, Doron A (2007) The study of carbon-coated V2O5 nanoparticles as a potential cathodic material for Li rechargeable batteries. J Electrochem Soc 154(7):A605–A613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Udayabhanu
    • 1
  • V. Pavitra
    • 1
  • S. C. Sharma
    • 2
  • G. Nagaraju
    • 1
    Email author
  1. 1.Dept. of ChemistrySiddaganga Institute of Technology (Affiliated to VTU, Belagavi)TumakuruIndia
  2. 2.Dept. of Mechanical EngineeringJain UniversityBengaluruIndia

Personalised recommendations