pp 1–11 | Cite as

Synthesis of three-dimensional nitrogen/sulfur-co-doped graphene hydrogels at low temperature and atmospheric pressure for supercapacitor materials

  • Chengyu Zhu
  • Xiaoxiong Zhang
  • Wenjun ZhangEmail author
  • Cuiliu Li
  • Xiaohong Qin
Original Paper


Heteroatom doping and three-dimensional (3D) porous structures are critical to the performance of graphene supercapacitor electrode materials. However, the conventional methods, such as chemical vapor deposition (CVD) and hydrothermal synthesis, require tedious processes and harsh conditions. In this work, we describe a very simple and efficient approach to fabricate a 3D nitrogen/sulfur-co-doped porous graphene hydrogel (3DNS-GH). It is found that thiourea can reduce graphene oxide (GO) obtaining 3DNS-GHs at low temperature and atmospheric pressure by adjusting the pH value, because the reducibility of thiourea significantly increases in acidic or alkaline media. Furthermore, the amount of nitrogen and sulfur doping and nano-pore structure varies with the pH value of solution. The 3DNS-GH exhibits uniform pore structure and can be directly used as electrode materials without additive binder. The binder-free electrode based on the optimum operating conditions (3DNS-GH-12) exhibit a high specific capacitance of 259.2 F g−1 and retain 96.0% of its initial capacitance after 10,000 cycles in 2 M KOH solution at 10 A g−1. Additionally, the symmetrical supercapacitor assembled by the 3DNS-GH-12 showed an impressive energy density of 6.08 W h kg−1 and a high power density of 7.51 kW kg−1. Therefore, these materials demonstrate excellent performance, indicating this route possess potential applied value in the production of supercapacitor electrode materials.


Graphene hydrogels Co-doped Low temperature and atmospheric pressure Supercapacitor 


Funding information

This work was supported by the Educational Committee of Hebei Province (No. ZD2017214).

Supplementary material

11581_2019_3322_MOESM1_ESM.pdf (930 kb)
ESM 1 (PDF 930 kb)


  1. 1.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev45(21):5925–5950CrossRefGoogle Scholar
  2. 2.
    Hou ZX, Li GB, Wang SH, Wang MH, Hu XD, Zhou Y, Li SM (2014) Adv Mater Res989-994:337CrossRefGoogle Scholar
  3. 3.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett8(10):3498–3502CrossRefGoogle Scholar
  4. 4.
    Si Y, Samulski ET (2008) Chem Mater20(21):6792CrossRefGoogle Scholar
  5. 5.
    Cao X, Yin Z, Zhang H (2014) Energy Environ Sci7(6):1850CrossRefGoogle Scholar
  6. 6.
    Xu Y, Shi G, Duan X (2015) Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Acc Chem Res48(6):1666–1675CrossRefGoogle Scholar
  7. 7.
    Kong XK, Chen CL, Chen QW (2014) Doped graphene for metal-free catalysis. Chem Soc Rev43(8):2841–2857CrossRefGoogle Scholar
  8. 8.
    Paraknowitsch JP, Thomas A (2013) Energy Environ Sci6:10CrossRefGoogle Scholar
  9. 9.
    Wang H, Maiyalagan T, Wang X (2012) ACS Catal2(5):781CrossRefGoogle Scholar
  10. 10.
    Yu X, Kang Y, Park HS (2016) Carbon101:49CrossRefGoogle Scholar
  11. 11.
    Liao Y, Huang Y, Shu D, Zhong Y, Hao J, He C, Zhong J, Song X (2016) Electrochim Acta194:136CrossRefGoogle Scholar
  12. 12.
    Gopalsamy K, Balamurugan J, Thanh TD, Kim NH, Lee JH (2017) Chem Eng J312:180CrossRefGoogle Scholar
  13. 13.
    Chen Y, Liu Z, Sun L, Lu Z, Zhuo K (2018) J Power Sources390:215CrossRefGoogle Scholar
  14. 14.
    Xu C, Su Y, Liu D, He X (2015) Three-dimensional N,B-doped graphene aerogel as a synergistically enhanced metal-free catalyst for the oxygen reduction reaction. Phys Chem Chem Phys17(38):25440–25448CrossRefGoogle Scholar
  15. 15.
    Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L (2012) BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed Eng51(17):4209–4212CrossRefGoogle Scholar
  16. 16.
    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed Eng52(11):3110–3116CrossRefGoogle Scholar
  17. 17.
    Bepete G, Voiry D, Chhowalla M, Chiguvare Z, Coville NJ (2013) Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale5(14):6552–6557CrossRefGoogle Scholar
  18. 18.
    Xue Y, Yu D, Dai L, Wang R, Li D, Roy A, Lu F, Chen H, Liu Y, Qu J (2013) Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys Chem Chem Phys15(29):12220–12226CrossRefGoogle Scholar
  19. 19.
    Zhang W, Chen Z, Guo X, Jin K, Wang Y, Li L, Zhang Y, Wang Z, Sun L, Zhang T (2018) Electrochim Acta278:51CrossRefGoogle Scholar
  20. 20.
    Wang T, Wang LX, Wu DL, Xia W, Jia DZ (2015) Sci Rep5:9591CrossRefGoogle Scholar
  21. 21.
    Ke Q, Wang J (2016) J Mater2(1):37Google Scholar
  22. 22.
    Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D (2012) Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir28(1):235–241CrossRefGoogle Scholar
  23. 23.
    Li J, Zhang G, Fu C, Deng L, Sun R, Wong C-P (2017) J Power Sources345:146CrossRefGoogle Scholar
  24. 24.
    Ai W, Luo Z, Jiang J, Zhu J, Du Z, Fan Z, Xie L, Zhang H, Huang W, Yu T (2014) Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance li-ion batteries and oxygen reduction reaction. Adv Mater26(35):6186–6192CrossRefGoogle Scholar
  25. 25.
    Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol11(7):626–632CrossRefGoogle Scholar
  26. 26.
    Li J, Qin W, Xie J, Lei H, Zhu Y, Huang W, Xu X, Zhao Z, Mai W (2018) Nano Energy53:415CrossRefGoogle Scholar
  27. 27.
    Bosch-Navarro C, Coronado E, Marti-Gastaldo C, Sanchez-Royo JF, Gomez MG (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale4(13):3977–3982CrossRefGoogle Scholar
  28. 28.
    Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc131(31):11027–11032CrossRefGoogle Scholar
  29. 29.
    Zhu Y, Murali S, Stoller MD et al (2011) Science332(6037):1537CrossRefGoogle Scholar
  30. 30.
    Li H, Tao Y, Zheng X, Li Z, Liu D, Xu Z, Luo C, Luo J, Kang F, Yang QH (2015) Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale7(44):18459–18463CrossRefGoogle Scholar
  31. 31.
    Song B, Sizemore C, Li L, Huang X, Lin Z, Moon K-s, Wong C-P (2015) J Mater Chem A3(43):21789CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chengyu Zhu
    • 1
  • Xiaoxiong Zhang
    • 1
  • Wenjun Zhang
    • 1
    Email author
  • Cuiliu Li
    • 1
  • Xiaohong Qin
    • 1
  1. 1.School of Chemical EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations