Advertisement

Ionics

pp 1–8 | Cite as

A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries

  • Jun Li
  • Kongjun ZhuEmail author
  • Zhongran Yao
  • Guoming Qian
  • Jie Zhang
  • Kang Yan
  • Jing Wang
Original Paper
  • 3 Downloads

Abstract

Solid electrolytes should be sought to exhibit high conductivity, good thermostability, and excellent mechanical properties for realizing excellent performance of lithium-ion batteries. In this study, we optimize the composition of poly(ethylene oxide)/poly(vinylidene fluoride) (PEO/PVDF) matrix and introduce Li6.2Ga0.1La3Zr1.5Bi0.5O12 (LLZO) ceramic powders into the matrix to form novel composite solid electrolytes. The PEO/PVDF blend matrix shows a low melting point and crystallinity and a high thermostability when the weight ratio of PEO and PVDF is 7:3. The electrolyte consisting of this PEO/PVDF blend matrix and 10 wt% LLZO shows the maximum conductivity (4.2 × 10−5 S cm−1 at 30 °C). In addition, all-solid-state LiFePO4||Li battery assembled with this solid electrolyte shows good cycling stability, which retained 96.5% of the maximum capacity after 100 cycles, and columbic efficiency (close to 100%) at 60 °C. The Li||Li symmetric battery assembled with the solid electrolyte can be steadily cycled for more than 300 h at a current density of 0.2 mA cm−2 at 60 °C. Hence, the new as-synthesized solid electrolyte should be a promising electrolyte for high performance of all-solid-state batteries.

Keywords

Composite solid electrolyte Poly(ethylene oxide) Poly(vinylidene fluoride) LLZO All-solid-state lithium-ion battery 

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (NSFC no. 51672130, 51572123), the Key Research and Development Program of Jiangsu Province (grant no. BE2018008-2), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (grant no. MCMS-0518K01), the special fund of 333 high-level talents training project in Jiangsu province (BRA2017424), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322CrossRefGoogle Scholar
  2. 2.
    Youcef HB, Garcia-Calvo O, Lago N, Devaraj S, Armand M (2016) Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim Acta 220:587–594CrossRefGoogle Scholar
  3. 3.
    Li Y, Fan C, Zhang J, Wu X (2018) A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Trans 47:14932–14937CrossRefGoogle Scholar
  4. 4.
    Polu AR, Rhee HW (2015) Nanocomposite solid polymer electrolytes based on poly (ethylene oxide)/POSS-PEG (n = 13.3) hybrid nanoparticles for lithium ion batteries. J Ind Eng Chem 31:323–329CrossRefGoogle Scholar
  5. 5.
    Sasithorn K, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta 161:171–176CrossRefGoogle Scholar
  6. 6.
    Zhang W, Nie J, Li F, Wang Z, Sun C (2018) A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45:413–419CrossRefGoogle Scholar
  7. 7.
    Choi KH, Cho SJ, Kim SH, Kwon YH, Kim JY, Lee SY (2014) Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv Funct Mater 24:44–52CrossRefGoogle Scholar
  8. 8.
    Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3:19218–19253CrossRefGoogle Scholar
  9. 9.
    Zhang J, Huang X, Wei H, Fu J, Huang Y, Tang X (2010) Novel PEO-based solid composite polymer electrolytes with inorganic–organic hybrid polyphosphazene microspheres as fillers. J Appl Electrochem 40:1475–1481CrossRefGoogle Scholar
  10. 10.
    Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386CrossRefGoogle Scholar
  11. 11.
    Wang Y, Pan Y, Wang L, Pang M, Chen L (2005) Conductivity studies of plasticized PEO-Lithium chlorate–FIC filler composite polymer electrolytes. Mater Lett 59:3021–3026CrossRefGoogle Scholar
  12. 12.
    Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234:19–24CrossRefGoogle Scholar
  13. 13.
    Tao C, Gao M, Yin B, Li B, Huang Y, Xu G, Bao J (2017) A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim Acta 257:31–39CrossRefGoogle Scholar
  14. 14.
    Fan L, Dang Z, Nan C, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:47–53CrossRefGoogle Scholar
  16. 16.
    Jung YC, Lee SM, Choi JH, Jang SS, Kim DW (2015) All solid-state lithium batteries assembled with hybrid solid electrolytes. J Electrochem Soc 162:A704–A710CrossRefGoogle Scholar
  17. 17.
    Li Y, Yang T, Wu W, Cao Z, He W, Gao Y, Liu J, Li G (2018) Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 24:3305–3315CrossRefGoogle Scholar
  18. 18.
    Wang M, Sakamoto J (2018) Dramatic reduction in the densification temperature of garnet-type solid electrolytes. Ionics 24:1861–1868CrossRefGoogle Scholar
  19. 19.
    Wu J, Chen E, Yu Y, Liu L, Wu Y, Pang W, Peterson VK, Gu X (2017) Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces 9:1542–1552CrossRefGoogle Scholar
  20. 20.
    Wu J, Pang W, Peterson V, Wei L, Guo X (2017) Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 9:12461–12468CrossRefGoogle Scholar
  21. 21.
    Chen F, Yang D, Zha W, Zhu B, Zhang Y, Li J, Gu Y, Shen Q, Zhang L, Sadoway DR (2017) Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta 258:1106–1114CrossRefGoogle Scholar
  22. 22.
    Saikia D, Chen-Yang YW, Chen YT, Li YK, Lin SI (2008) Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234:24–32CrossRefGoogle Scholar
  23. 23.
    Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222CrossRefGoogle Scholar
  24. 24.
    Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. Inorg Chem 50:1089–1097CrossRefGoogle Scholar
  25. 25.
    He Z, Chen L, Zhang B, Liu Y, Fan L (2018) Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J Power Sources 392:232–238CrossRefGoogle Scholar
  26. 26.
    Zhang X, Xu B, Lin Y, Shen Y, Li L, Nan C (2018) Effects of Li6.75La3Zr1.75Ta0.25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics 327:32–38CrossRefGoogle Scholar
  27. 27.
    Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H, Cui Y (2017) Solid-state lithium−sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17:2967–2972CrossRefGoogle Scholar
  28. 28.
    Cheng SHS, He KQ, Liu Y, Zha JW, Kamruzzaman M, Ma RLW, Dang ZM, Li RKY, Chung CY (2017) Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim Acta 253:430–438CrossRefGoogle Scholar
  29. 29.
    Wu F, Xiong S, Qian Y, Yu S (2015) Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: a new anode material for lithium-ion batteries. Angew Chem Int Edit 54:10787–10791CrossRefGoogle Scholar
  30. 30.
    Zhao S, Li H, Jian Z, Xing Y, Zhang S (2018) Self-assembled hierarchical porous NiMn2O4 microspheres as high performance Li-ion battery anodes. Rsc Adv 8:41749–41755CrossRefGoogle Scholar
  31. 31.
    Choudhury S, Mangal R, Agrawal A, Archer LA (2015) A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun 6:10101CrossRefGoogle Scholar
  32. 32.
    Pan Q, Smith DM, Qi H, Wang S, Li CY (2015) Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv Mater 27:5595–6001Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jun Li
    • 1
    • 2
  • Kongjun Zhu
    • 1
    Email author
  • Zhongran Yao
    • 1
  • Guoming Qian
    • 1
  • Jie Zhang
    • 1
    • 2
  • Kang Yan
    • 1
  • Jing Wang
    • 1
  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations