Advertisement

Ionics

pp 1–8 | Cite as

Mechanistic Elucidation of Surface Cation Segregation in Double Perovskite PrBaCo2O5+δ Material using MD and DFT Simulations for Solid Oxide Fuel Cells

  • Uzma Anjum
  • Manish Agarwal
  • Tuhin S. Khan
  • M. Ali HaiderEmail author
Original Paper

Abstract

Surface segregation of A-site cation is a known phenomenon in perovskite and layered perovskite materials which are used as the cathode in a solid oxide fuel cell (SOFC). A combined density functional theory (DFT) and molecular dynamics (MD) based theoretical approach was utilized to develop a mechanistic understanding of surface segregation of Ba cations in double perovskite PrBaCo2O5+δ (PBCO) electrode. Using DFT, the energetics for oxygen vacancy creation (EOV) in the Ba/Co and Pr/Co terminal surfaces of PBCO was calculated to be 308 kJ/mol and 318 kJ/mol, respectively, which was observed to be higher than that of Co/Pr (EOV = 151.5 kJ/mol) and Co/Ba (EOV = 121.6 kJ/mol) terminal surfaces. MD and DFT calculations suggested, both oxygen anion migration and oxygen vacancy creation were least preferred in the Ba plane. DFT calculations of the energy of terminal surfaces further revealed that the surface containing the Ba cations was the most stable surface having surface energy (γ = 6.9 kJ/mol.Å2) much lower than that of the Pr containing surface (Pr/Co, (γ = 10.8 kJ/mol.Å2)). Cation disordering and depth of perturbation were studied in Ba/Co, Pr/Co, Co/Ba, and Co/Pr terminal surfaces, using MD simulations. The depth of cation disordering in Co/Ba (5.4 Å) was calculated to be highest as compared with other terminal surfaces. Cation density profile showed the preferential migration Ba ions towards the surface showing a disruption of cation ordering in the near surface zone.

Keywords

Segregation MD DFT Cathode SOFC Double perovskite 

Notes

Acknowledgments

Authors would like to acknowledge the high performance computing facility at IIT Delhi.

Funding information

Authors would like to acknowledge the Department of Science and Technology, Government of India (DST/TMD/MECSP/2KI7/07) for the financial support.

Supplementary material

11581_2019_3318_MOESM1_ESM.docx (184 kb)
ESM 1 (DOCX 184 kb).

References

  1. 1.
    Haider MA, McIntosh S (2009) Evidence for two activation mechanisms in LSM SOFC cathodes. J Electrochem Soc 156(12):B1369CrossRefGoogle Scholar
  2. 2.
    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791CrossRefGoogle Scholar
  3. 3.
    Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32(1):17–28CrossRefGoogle Scholar
  4. 4.
    Tarancón A et al (2007) GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. J Power Sources 174(1):255–263CrossRefGoogle Scholar
  5. 5.
    Tarancón A, Burriel M, Santiso J, Skinner SJ, Kilner JA (2010) Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 20(19):3799–3813CrossRefGoogle Scholar
  6. 6.
    Kim G, Wang S, Jacobson AJ, Yuan Z, Donner W, Chen CL, Reimus L, Brodersen P, Mims CA (20016) Oxygen exchange kinetics of epitaxial PrBaCo2 O5+δ thin films. Appl.Phys.Lett. 88: 024103-3Google Scholar
  7. 7.
    Wei B, Schroeder M, Martin M (2018) Surface cation segregation and chromium deposition on the double-perovskite oxide PrBaCo2O5+δ. ACS Appl Mater Interfaces 10(10):8621–8629CrossRefGoogle Scholar
  8. 8.
    Druce J, Tellez H, Burriel M, Sharp MD, Fawcett LJ, Cook SN, McPhail DS, Ishihara T, Brongersma HH, Kilner JA (2014) Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ Sci 7:3593–3599CrossRefGoogle Scholar
  9. 9.
    Nio L, Brongersma HH, Kilner JA, Ryan MP, Skinner SJ (2014) Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ Sci 7:311–316CrossRefGoogle Scholar
  10. 10.
    Jiang SP, Zhang S, Zhen YD (2006) Deposition of Cr species at (La,Sr)(Co,Fe)O[sub 3] cathodes of solid oxide fuel cells. J Electrochem Soc 153(1):A127–A134CrossRefGoogle Scholar
  11. 11.
    Pan Z, Liu Q, Zhang L, Zhang X, Hwa S (2015) Effect of Sr surface segregation of La0.6Sr0.4Co0.2Fe0.8O3-d electrode on its electrochemical performance in SOC. J Electrochem Soc 162(12):1316–1323CrossRefGoogle Scholar
  12. 12.
    Faith Piskin BY, Bliem R (2018) Effect of crystal orientation on the segregation of aliovalent dopants at the surface of La0.6Sr0.4CoO3. J Mater Chem A Chem A 6:14136–14145CrossRefGoogle Scholar
  13. 13.
    Navickas E, Huber TM, Chen Y, Hetaba W, Holzlechner G, Rupp G, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B, Fleig J (2015) Fast oxygen exchange and diffusion kinetics of grain boundaries in Sr-doped LaMnO3 thin films. Phys Chem Chem Phys 17(12):7659–7669CrossRefGoogle Scholar
  14. 14.
    Cox-Galhotra RA, McIntosh S (2012) Electrical conductivity relaxation of polycrystalline PrBaCo2O5+δ thin films. Solid State Ionics 228:14–18CrossRefGoogle Scholar
  15. 15.
    Tellez H, Druce J, Kilner JA, Ishihara T (2015) Relating surface chemistry and oxygen surface exchange in LnBaCo 2 O 5 + d air electrodes. Faraday Discuss 182:145–157Google Scholar
  16. 16.
    Anjum U, Khan TS, Agarwal M, Haider MA (2019) Identifying the origin of the limiting process in a double perovskite PrBa0.5Sr0.5Co1.5Fe0.5O5+δ thin-film electrode for solid oxide fuel cells. ACS Appl Mater Interfaces 11(28):25243–25253CrossRefGoogle Scholar
  17. 17.
    Anjum U, Agarwal M, Khan TS, Prateek, Gupta RK, Haider MA (2019) Controling surface cation segregation in a nanostructured double perovksite GdBaCo2O5+δ electrode for solid oxide fuel cells. Nanoscale Advance ArticleGoogle Scholar
  18. 18.
    Anjum U, Vashishtha S, Sinha N, Haider MA (2015) Role of oxygen anion diffusion in improved electrochemical performance of layered perovskite LnBa1−ySryCo2−xFexO5+δ (Ln=Pr, Nd, Gd) electrodes. Solid State Ionics 280:24–29CrossRefGoogle Scholar
  19. 19.
    Seymour I, Tarancón A, Chroneos A (2012) Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics 216:41–43CrossRefGoogle Scholar
  20. 20.
    Bucko T (2008) Ab initio calculations of free-energy reaction barriers. J Physics-Condensed Matter 20(6):064211CrossRefGoogle Scholar
  21. 21.
    Frontera C, Caneiro A, Carrillo AE, Oró-Solé J, García-Muñoz JL (2005) Tailoring oxygen content on PrBaCo2O5+δ layered cobaltites. Chem Mater 17:5439–5445CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmiiller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  23. 23.
    Cox-Galhotra RA et al (2013) An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5+δ at high temperature and controlled oxygen partial pressure. Solid State Ionics 249–250:34–40CrossRefGoogle Scholar
  24. 24.
    Fullarton IC et al (1995) Study of oxygen ion transport in acceptor doped samarium cobalt oxide. Ionics (Kiel) 1:51–58CrossRefGoogle Scholar
  25. 25.
    Ding H, Virkar AV, Liu M, Liu F (2013) Suppression of Sr surface segregation in La1−xSrxCo1−yFeyO3−δ: a first principles study. Phys Chem Chem Phys 15(2):489–496CrossRefGoogle Scholar
  26. 26.
    Delph TJ, Cao P, Park HS, Zimmerman JA (2013) A harmonic transition state theory model for defect initiation in crystals. Model Simul Mater Sci Eng 21(2):025010CrossRefGoogle Scholar
  27. 27.
    Buckingham RA (1938) The classical equation of state of gaseous helium, neon and argon. Proc R Soc A Math Phys Eng Sci 168(933):264–283CrossRefGoogle Scholar
  28. 28.
    Uzma Anjum MAH, Vashishtha S, Agarwal M, Tiwari P, Sinha N, Agrawal A, Basu S (2016) Oxygen anion diffusion in double perovskite GdBaCo2O5+d and LnBa0.5Sr0.5Co2-xFeXO5+d (Ln = Gd, Pr, Nd) electrodes. Int J Hydrog Energy 41:7631–7640CrossRefGoogle Scholar
  29. 29.
    Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner J (2011) Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci 4(8):2774–2789CrossRefGoogle Scholar
  30. 30.
    Sayle TXT, Parker C, Sayle DC (2007) Oxygen transport in unreduced , reduced and Rh (III)-doped CeO2 nanocrystals. Faraday Discuss 134:377–397CrossRefGoogle Scholar
  31. 31.
    Kuklja MM, Kotomin EA, Merkle R, Mastrikov YA, Maier J (2013) Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys Chem Chem Phys 15(15):5443–5471CrossRefGoogle Scholar
  32. 32.
    Wu K-T et al (2017) Surface chemistry and restructuring in thin-film Lan+1NinO3n+1 (n = 1, 2 and 3) Ruddlesden–Popper oxides. J Mater Chem A 5(19):9003–9013CrossRefGoogle Scholar
  33. 33.
    Anjum U, Agarwal M, Khan TS, Haider MA (2017) Effect of Fe-doping on oxygen anion diffusion in PrBaCo2-xFexO5+δ double perovskite electrodes for solid oxide fuel cells. ECS Trans 77:125–131CrossRefGoogle Scholar
  34. 34.
    Jalili H, Han JW, Kuru Y, Cai Z, Yildiz B (2011) New Insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3. J Phys Chem Lett 2(7):801–807CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Uzma Anjum
    • 1
  • Manish Agarwal
    • 2
  • Tuhin S. Khan
    • 1
  • M. Ali Haider
    • 1
    Email author
  1. 1.Renewable Energy and Chemical Laboratory, Chemical Engineering DepartmentIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Computer Services CentreIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations