Advertisement

Ionics

pp 1–10 | Cite as

Effects of different GO contents in GO@KB-S composite prepared by spray drying method for lithium-sulfur batteries

  • Daofeng Guo
  • Xinye QianEmail author
  • Lina Jin
  • Xiangqian Shen
  • Shanshan Yao
  • Li Wang
  • Jinli Tan
Original Paper
  • 5 Downloads

Abstract

In order to solve the Li-S battery issues caused by the low conductivity of sulfur and the shuttle effect of lithium polysulfides, we successfully developed a spray drying method to prepare graphene oxide (GO) coating Ketjen Black@S composite powders, which is similar to the core-shell structure. The effects of different GO coating content on the battery performances were carefully studied. The results of the electrochemical measurements demonstrate that the 10% GO coating samples showed the best performances. With a high sulfur areal density of 3 mg cm−2, the 10% GO@KB-S cathode shows the highest discharge capacities of 1170.6 mAh g−1 at 0.05 C, 1010.0 mAh g−1 at 0.1 C, 880.1 mAh g−1 at 0.3 C, and 782.8 mAh g−1 at 0.5 C. Furthermore, the cycle retention of the 10% GO coating sample is 77.82% after 100 cycles and 71.13% after 200 cycles with the average coulombic efficiency of approximately 98%.

Keywords

GO content Spray drying GO coating Li-S battery 

Notes

Funding information

This work was financially supported by the Youth Fund of Jiangsu Province (Grant No. BK20190857) and the Start-up Fund of Jiangsu University (Grant No. 14JDG060, 14JDG058).

References

  1. 1.
    Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRefGoogle Scholar
  2. 2.
    Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2(3):176–184CrossRefGoogle Scholar
  3. 3.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zu C-X, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4(8):2614–2624CrossRefGoogle Scholar
  5. 5.
    Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J Electrochem Soc 149(10):A1321–A1325CrossRefGoogle Scholar
  6. 6.
    Su Y-S, Manthiram A (2012) A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries. Electrochim Acta 77:272–278CrossRefGoogle Scholar
  7. 7.
    Yang X, Zhang L, Zhang F, Huang Y, Chen Y (2014) Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries. ACS Nano 8(5):5208–5215PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51(38):9592–9595CrossRefGoogle Scholar
  9. 9.
    Brun N, Sakaushi K, Yu L, Giebeler L, Eckert J, Titirici MM (2013) Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Phys Chem Chem Phys 15(16):6080–6087PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Peng H-J et al (2014) Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium–sulfur batteries. ACS Nano 8(11):11280–11289PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Huang J-Q et al (2013) Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from− 40 to 60 C. Nano Energy 2(2):314–321CrossRefGoogle Scholar
  12. 12.
    Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Rao M, Song X, Cairns EJ (2012) Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells. J Power Sources 205:474–478CrossRefGoogle Scholar
  14. 14.
    Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783CrossRefGoogle Scholar
  16. 16.
    Wang J et al (2006) Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim Acta 51(22):4634–4638CrossRefGoogle Scholar
  17. 17.
    Dong Z et al (2013) Sulfur@ hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Adv 3(47):24914–24917CrossRefGoogle Scholar
  18. 18.
    Wu F et al (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115(13):6057–6063CrossRefGoogle Scholar
  19. 19.
    Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc 135(44):16736–16743PubMedCrossRefGoogle Scholar
  20. 20.
    Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181PubMedCrossRefGoogle Scholar
  21. 21.
    Li W et al (2013) High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci 110(18):7148–7153PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang Y et al (2013) Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J Mater Chem A 1(2):295–301CrossRefGoogle Scholar
  23. 23.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506PubMedCrossRefGoogle Scholar
  24. 24.
    Wei W et al (2011) CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem Commun 13(5):399–402CrossRefGoogle Scholar
  25. 25.
    Kim M-S et al (2014) The effect of V2O5/C additive on the suppression of polysulfide dissolution in Li-sulfur batteries. J Electroceram 33(3–4):142–148CrossRefGoogle Scholar
  26. 26.
    Li W et al (2014) V2O5 polysulfide anion barrier for long-lived Li–S batteries. Chem Mater 26(11):3403–3410CrossRefGoogle Scholar
  27. 27.
    Ding B et al (2013) Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochim Acta 107:78–84CrossRefGoogle Scholar
  28. 28.
    Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. J Phys Chem C 116(37):19653–19658CrossRefGoogle Scholar
  29. 29.
    Liang X et al (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6:5682PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Song M-S et al (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795CrossRefGoogle Scholar
  31. 31.
    Fan Q, Liu W, Weng Z, Sun Y, Wang H (2015) Ternary hybrid material for high-performance lithium–sulfur battery. J Am Chem Soc 137(40):12946–12953PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sun F et al (2013) A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. J Mater Chem A 1(42):13283–13289CrossRefGoogle Scholar
  33. 33.
    Pang Q et al (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-Sulphur batteries. Nat Commun 5:4759PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zheng J, Tian J, Wu D et al (2014) Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett 14(5):2345–2352PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wang Z, Wang B, Yang Y, Cui Y, Wang Z, Chen B, Qian G (2015) Mixed-metal–organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 7(37):20999–21004PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK (2013) Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater 25(45):6547–6553PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Liang Z, Zheng G, Li W, Seh ZW, Yao H, Yan K, Kong D, Cui Y (2014) Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5):5249–5256PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yang ZZ, Wang HY, Lu L et al (2016) Hierarchical TiO 2 spheres as highly efficient polysulfide host for lithium-sulfur batteries. Sci Rep 6:22990PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Peng H-J et al (2017) Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater 7(24):1700260CrossRefGoogle Scholar
  40. 40.
    Li Q, Liu L, Zhang S, Xu M, Wang X, Wang C, Besenbacher F, Dong M (2014) Modulating Aβ33–42 peptide assembly by graphene oxide. Chem Eur J 20(24):7236–7240PubMedCrossRefGoogle Scholar
  41. 41.
    Gu J et al (2018) The use of spray drying in large batch synthesis of KB-S@rGO composite for high-performance Lithium-sulfur batteries. Chem Sel 3(16):4271–4276Google Scholar
  42. 42.
    Wang J-g et al (2008) Point-defect mediated bonding of Pt clusters on (5, 5) carbon nanotubes. J Phys Chem C 113(3):890–893CrossRefGoogle Scholar
  43. 43.
    Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41PubMedCrossRefGoogle Scholar
  44. 44.
    Bo, Zheng, et al (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4: 4684Google Scholar
  45. 45.
    Chua CK, Ambrosi A, Pumera M (2012) Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. J Mater Chem 22(22):11054–11061CrossRefGoogle Scholar
  46. 46.
    Xue S et al (2019) Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries. Electrochim Acta 299:549–559CrossRefGoogle Scholar
  47. 47.
    Yao H et al (2014) Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat Commun 5:3943PubMedCrossRefGoogle Scholar
  48. 48.
    Tian Y et al (2018) Micro-spherical sulfur/graphene oxide composite via spray drying for high performance lithium sulfur batteries. Nanomaterials 8(1):50PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daofeng Guo
    • 1
  • Xinye Qian
    • 1
    Email author
  • Lina Jin
    • 1
  • Xiangqian Shen
    • 1
  • Shanshan Yao
    • 1
  • Li Wang
    • 2
  • Jinli Tan
    • 2
  1. 1.Institute for Advanced Materials, College of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Hunan Engineering Laboratory of Power Battery Cathode MaterialsChangsha Research Institute of Mining and MetallurgyChangshaPeople’s Republic of China

Personalised recommendations