pp 1–8 | Cite as

Electrodeposited binder-free CoMn LDH/CFP electrode with high electrochemical performance for asymmetric supercapacitor

  • Cuimei Zhao
  • Songlin Tian
  • Ping Nie
  • Ting Deng
  • Fang Ren
  • Limin ChangEmail author
Original Paper


Carbon fiber paper (CFP)-supported CoMn-layered double hydroxide (LDH) or Co(OH)2 has been obtained using a simple and effective one-step electrodeposition. The binder-free CoMn LDH/CFP electrode displays a much enhanced pseudocapacitive performance with high specific capacitance (980 Fg−1 at 2 Ag−1), outstanding rate capability (79% capacitance retention with the current density from 2 to 32 Ag−1), and long-term life cycle (81% capacitance retention after 10,000 cycles at 32 Ag−1), much superior to that of pure Co(OH)2 (709 Fg−1, 65%, 79%). The improvement of electrochemical performance can be due to the enhancement of electrical conductivity and specific surface area of the freestanding CoMn LDH/CFP electrode, favoring electrochemical efficient and activity of the whole electrode material. And furthermore, an aqueous asymmetric supercapacitor fabricated with the CoMn LDH/CFP-positive electrode and the AC/CFP-negative electrode achieves a high specific capacitance of 53.5 Fg−1 at a wide potential window of 1.6 V and provides a high energy density of 19.1 Whkg−1 at a well power density of 400 Wkg−1. The facile preparation and excellent performance of the CoMn LDH/CFP make it a promising material for energy conversion/storage application.


Co-Mn-layered double hydroxides Nano composite materials Asymmetric supercapacitor 


Funding information

Support was received from the National Natural Science Foundation of China (Nos. 51778268, 51802111) and the Projects of Jilin Province Department of Education (No. JJKH20191016KJ).


  1. 1.
    Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280CrossRefGoogle Scholar
  2. 2.
    Wang T, Chen HC, Yu F, Zhao XS, Wang H (2019) Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials 16:545–573CrossRefGoogle Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  4. 4.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  5. 5.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  6. 6.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New YorkCrossRefGoogle Scholar
  7. 7.
    Simon JA, Vickraman P, Reddy BJ (2018) Synthesis and characterization of high porous carbon sphere@ nickel oxide core-shell nanocomposite for supercapacitor applications. J Electroanal Chem 823:342–349CrossRefGoogle Scholar
  8. 8.
    Deng T, Lu Y, Zhang W, Sui M, Shi X, Wang D, Zheng W (2018) Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv Energy Mater 8(7):1702294 1-7CrossRefGoogle Scholar
  9. 9.
    Deng T, Zhang W, Arcelus O, Kim JG, Carrasco J, Yoo SJ, Zheng W, Wang J, Tian H, Zhang H, Cui X, Rojo T (2017) Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun 8(15194):1–9Google Scholar
  10. 10.
    Tang Y, Liu Y, Yu S, Mu S, Xiao S, Zhao Y, Gao F (2014) Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life. J Power Sources 256:160–169CrossRefGoogle Scholar
  11. 11.
    Guo XL, Liu XY, Hao XD, Zhu SJ, Dong F, Wen ZQ, Zhang YX (2016) Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim Acta 194: 179-186.CrossRefGoogle Scholar
  12. 12.
    Jagadale AD, Guan G, Li X, Du X, Ma X, Hao X, Abudula A (2016) Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J Power Sources 306:526–534CrossRefGoogle Scholar
  13. 13.
    Su L, Gong L, Gao J (2012) The supercapacitive performances of Co(OH)2/Ni(OH)2 composites in lithium hydroxide solution: Selection of electrolyte and effect of weight ratio. J Power Sources 209:141–146CrossRefGoogle Scholar
  14. 14.
    Patil UM, Sohn JS, Kulkarni SB, Lee SC, Park HG, Gurav KV, Kim JH, Jun SC (2014) Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl Mater Interfaces 6:2450–2458CrossRefGoogle Scholar
  15. 15.
    Gao J, Xuan H, Xu Y, Liang T, Han X, Yang J, Han P, Wang D, Du Y (2018) Interconnected network of Zinc-Cobalt layered double hydroxide stick onto rGO/nickel foam for high performance asymmetric supercapacitors. Electrochim Acta 286:92–102CrossRefGoogle Scholar
  16. 16.
    Song F, Hu X (2014) Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J Am Chem Soc 136(47):16481–16484CrossRefGoogle Scholar
  17. 17.
    Zhao C, Ren F, Cao Y, Xue X, Duan X, Wang H, Chang L (2018) Facile synthesis of Co(OH)2/Al(OH)3 nanosheets with improved electrochemical properties for asymmetric supercapacitor. J Phys Chem Solids 112:54–60CrossRefGoogle Scholar
  18. 18.
    Chen D, Chen H, Chang X, Liu P, Zhao Z, Zhou J, Xu G, Lin H, Han S (2017) Hierarchical CoMn-layered double hydroxide nanowires on nickel foam as electrode material for high-capacitance supercapacitor. J Alloys Compd 729:866–873CrossRefGoogle Scholar
  19. 19.
    Peng SJ, Li LL, Wu HB, Madhavi S, Lou XW (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172 (1-7)CrossRefGoogle Scholar
  20. 20.
    Fan G, Wang H, Xiang X, Li F (2013) Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property. J Solid State Chem 197:14–22CrossRefGoogle Scholar
  21. 21.
    Zhao J, Lu Z, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high performance supercapacitors. RSC Adv 3:1045–1049CrossRefGoogle Scholar
  22. 22.
    Ma R, Liang J, Takada K, Sasaki T (2011) Topochemical synthesis of Co-Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect. J Am Chem Soc 133:613–620CrossRefGoogle Scholar
  23. 23.
    Zhao JW, Chen J, Xu SM, Shao MF, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938–2946CrossRefGoogle Scholar
  24. 24.
    Masikhwa TM, Madito MJ, Momodu DY, Dangbegnon JK, Guellati O, Harat A, Guerioune M, Barzegar F, Manyala N (2016) High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite. RSC Adv 6:46723–46732CrossRefGoogle Scholar
  25. 25.
    Scavetta E, Ballarin B, Gazzano M, Tonelli D (2009) Electrochemical behaviour of thin films of Co/Al layered double hydroxide prepared by electrodeposition. Electrochim Acta 54:1027–1033CrossRefGoogle Scholar
  26. 26.
    Han J, Dou Y, Zhao J, Wei M, Evans DG, Duan X (2013) Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small 9:98–106CrossRefGoogle Scholar
  27. 27.
    Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energystorage devices. J Mater Chem A 1:8836–8843CrossRefGoogle Scholar
  28. 28.
    Yu ZN, Thomas J (2014) Energy storing electrical cables: integrating energy storage and electrical conduction. Adv Mater 26:4279–4285CrossRefGoogle Scholar
  29. 29.
    Lu XF, Wu DJ, Li RZ, Li Q, Ye SH, Tong YX, Li GR (2014) Hierarchical NiCo2O4 nanosheets@ hollow microrod arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2(13):4706–4713CrossRefGoogle Scholar
  30. 30.
    Wang F, Zheng J, Li G, Ma J, Yang C, Wang Q (2018) Microwave synthesis of mesoporous CuCo2S4 nanoparticles for supercapacitor applications. Mater Chem Phys 215:121–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Cuimei Zhao
    • 1
  • Songlin Tian
    • 1
  • Ping Nie
    • 1
  • Ting Deng
    • 2
  • Fang Ren
    • 1
  • Limin Chang
    • 1
    Email author
  1. 1.Key Laboratory of Preparation and Applications of Environmental Friendly Materials of the Ministry of EducationJilin Normal UniversityChangchunChina
  2. 2.Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard MaterialsJilin UniversityChangchunChina

Personalised recommendations