pp 1–15 | Cite as

Ternary nanostructured MZnCo oxides (M=Al, Mg, Cu, Fe, Ni) prepared by hydrothermal method as excellent charge storage devices

  • M. SaghafiEmail author
  • S.A. Hosseini
  • Sh. Zangeneh
  • A.H. Moghanian
  • Sh. Mohajerzadeh
Original Paper


Electrochemical properties of the spinel groups of MZnCo oxides (M=Al, Mg, Cu, Fe, Ni) as the active electrode materials are studied and compared in this investigation. Different morphologies (nano-sheets and nano-wires) of such transition metal oxides were hydrothermally synthesized at 150 °C for 5 h on a Ni foam as substrate. Their capacitive behavior is analyzed with cyclic voltammetry, chrono-potentiometry, and electrochemical impedance spectroscopy to compare their performance as the charge storage devices. The charge storage capacity of ZnCo2O4, AlZnCo, MgZnCo, CuZnCo, FeZnCo, and NiZnCo oxides was found to be 917, 995, 886, 702, 682, 462 C g−1, respectively, at 50 mV s−1 scan rate. Among them, the highest specific capacity was found to be for AlZnCo oxide (at below 50 mV s−1 scan rates) and also for MgZnCo oxide (at higher 50 mV s−1 scan rates). The obtained results represent that the specific capacity of CuZnCo, FeZnCo, and NiZnCo oxide electrodes is lower than ZnCo2O4 oxide in all the scan rates. The cyclic life of all the electrodes shows excellent life performance after 5000 cycles. According to the obtained results, MZnCo oxide with multiple oxidation states showed superior electrochemical properties for electrochemical applications as a result of the rapid ion/electron transfer.


Charge storage ZnCo2O4 oxide Specific capacity Electrochemical investigation 


Funding information

This work was financially supported by the Research Council of Imam Khomeini International University and Iran Nanotechnology Initiative Council.


  1. 1.
    Lokhande CD, Dubal DP, Joo O-S (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11(3):255–270CrossRefGoogle Scholar
  2. 2.
    He P, Huang B, Huang Q, Chen T, Zhang Q (2018) Structural evolution of vertically oriented graphene nanosheet templating Ni–Co hydroxide as pseudocapacitive electrode. J Mater Sci 53(17):12352–12364CrossRefGoogle Scholar
  3. 3.
    Li G, Mo X, Law W-C, Chan KC (2019) 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. J Mater Chem A 7(8):4055–4062CrossRefGoogle Scholar
  4. 4.
    D. Kundu, B. D. Adams, V. Duffort, S. Hosseini Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, 2016.CrossRefGoogle Scholar
  5. 5.
    Wessells CD, Huggins RA, Cui Y (2011) Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat Commun 2:550PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Luo D, Wallar CJ, Shi K, Zhitomirsky I (2016) Enhanced capacitive performance of MnO2-multiwalled carbon nanotube electrodes, prepared using lauryl gallate dispersant. Colloids Surf A Physicochem Eng Asp 509:504–511CrossRefGoogle Scholar
  7. 7.
    Mary AJC, Bose AC (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211CrossRefGoogle Scholar
  8. 8.
    Nie X, Kong X, Selvakumaran D, Lou L, Shi J, Zhu T, Liang S, Cao G, Pan A (2018) Three-dimensional carbon-coated treelike Ni3S2 superstructures on a nickel foam as binder-free bifunctional electrodes. ACS Appl Mater Interfaces 10(42):36018–36027PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ (2019) Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor. Chem Eng J 359:409–418CrossRefGoogle Scholar
  10. 10.
    Nam H-S, Jang K-S, Ko JM, Kong Y-M, Kim J-D (2011) Electrochemical capacitance of nanoporous hydrous RuO2 templated by anionic surfactant. Electrochim Acta 56(18):6459–6463CrossRefGoogle Scholar
  11. 11.
    Shakir I, Choi JH, Shahid M, Shahid SA, Rana UA, Sarfraz M, Kang DJ (2013) Ultra-thin and uniform coating of vanadium oxide on multiwall carbon nanotubes through solution based approach for high-performance electrochemical supercapacitors. Electrochim Acta 111:400–404CrossRefGoogle Scholar
  12. 12.
    Wu MK, Chen C, Zhou JJ, Yi FY, Tao K, Han L (2018) MOF–derived hollow double–shelled NiO nanospheres for high–performance supercapacitors. J Alloys Compd 734:1–8CrossRefGoogle Scholar
  13. 13.
    Guo D, Song X, Li F, Tan L, Ma H, Zhang L, Zhao Y (2018) Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor. Colloids Surf A Physicochem Eng Asp 546:1–8CrossRefGoogle Scholar
  14. 14.
    Li X-J, Zhao Y, Chu W-G, Wang Y, Li Z-J, Jiang P, Zhao X-C, Liang M, Liu Y (2015) Vertically aligned carbon nanotube@MnO2 nanosheet arrays grown on carbon cloth for high performance flexible electrodes of supercapacitors. RSC Adv 5(94):77437–77442CrossRefGoogle Scholar
  15. 15.
    Krishnamoorthy K, Kim S-J (2013) Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater Res Bull 48(9):3136–3139CrossRefGoogle Scholar
  16. 16.
    Pusawale SN, Deshmukh PR, Lokhande CD (2011) Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl Surf Sci 257(22):9498–9502CrossRefGoogle Scholar
  17. 17.
    Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189CrossRefGoogle Scholar
  18. 18.
    Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials – capacitive, pseudocapacitive, or battery-like? ACS Nano 12(3):2081–2083PubMedCrossRefGoogle Scholar
  19. 19.
    Mariappan VK, Krishnamoorthy K, Pazhamalai P, Sahoo S, Nardekar SS, Kim S-J (2019) Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors. Nano Energy 57:307–316CrossRefGoogle Scholar
  20. 20.
    Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52(9):2959–2965CrossRefGoogle Scholar
  21. 21.
    Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han S-H, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J Alloys Compd 509(23):6677–6682CrossRefGoogle Scholar
  22. 22.
    Vadiyar MM, Bhise SC, Patil SK, Patil SA, Pawar DK, Ghule AV, Patil PS, Kolekar SS (2015) Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv 5(57):45935–45942CrossRefGoogle Scholar
  23. 23.
    Xu K, Yang J, Hu J (2018) Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J Colloid Interface Sci 511:456–462PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu M, Meng D, Wang C, Diao G (2013) Facile fabrication of hierarchically porous CuFe2O4 Nanospheres with enhanced capacitance property. ACS Appl Mater Interfaces 5(13):6030–6037PubMedCrossRefGoogle Scholar
  25. 25.
    Jadhav HS, Roy A, Chung W-J, Seo JG (2017) Growth of urchin-like ZnCo2O4 microspheres on nickel foam as a binder-free electrode for high-performance supercapacitor and methanol electro-oxidation. Electrochim Acta 246:941–950CrossRefGoogle Scholar
  26. 26.
    Yu Z-Y, Chen L-F, Yu S-H (2014) Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2(28):10889–10894CrossRefGoogle Scholar
  27. 27.
    Dong Y, Wang Y, Xu Y, Chen C, Wang Y, Jiao L, Yuan H (2017) Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor. Electrochim Acta 225:39–46CrossRefGoogle Scholar
  28. 28.
    Sagu JS, Wijayantha KGU, Tahir AA (2017) The pseudocapacitive nature of CoFe2O4 thin films. Electrochim Acta 246:870–878CrossRefGoogle Scholar
  29. 29.
    Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Li L, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209CrossRefGoogle Scholar
  30. 30.
    Wang H, Song X, Wang H, Bi K, Liang C, Lin S, Zhang R, Du Y, Liu J, Fan D, Wang Y, Lei M (2016) Synthesis of hollow porous ZnCo2O4 microspheres as high-performance oxygen reduction reaction electrocatalyst. Int J Hydrog Energy 41(30):13024–13031CrossRefGoogle Scholar
  31. 31.
    Zhen M, Liu L, Wang C (2017) Ultrathin mesoporous ZnCo2O4 nanosheets as anode materials for high-performance lithium-ion batteries. Microporous Mesoporous Mater 246:130–136CrossRefGoogle Scholar
  32. 32.
    Wang S, Ding Z, Wang X (2015) A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem Commun 51(8):1517–1519CrossRefGoogle Scholar
  33. 33.
    Zhou X, Feng W, Wang C, Hu X, Li X, Sun P, Shimanoe K, Yamazoe N, Lu G (2014) Porous ZnO/ZnCo2O4 hollow spheres: synthesis, characterization, and applications in gas sensing. J Mater Chem A 2(41):17683–17690CrossRefGoogle Scholar
  34. 34.
    Zhao J, Li C, Zhang Q, Zhang J, Wang X, Sun J, Wang J, Xie J, Lu C, Lu W, Yao Y (2017) All-solid-state hybrid supercapacitors based on ZnCo2O4 nanowire arrays and carbon nanorod electrode materials. Carbon 123:676–682CrossRefGoogle Scholar
  35. 35.
    Liu H, Wang J (2013) One-pot synthesis of ZnCo2O4 nanorod anodes for high power lithium ions batteries. Electrochim Acta 92:371–375CrossRefGoogle Scholar
  36. 36.
    Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22(18):8916–8921CrossRefGoogle Scholar
  37. 37.
    Li J, Wang J, Wexler D, Shi D, Liang J, Liu H, Xiong S, Qian Y (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1(48):15292–15299CrossRefGoogle Scholar
  38. 38.
    Wang Q, Zhu L, Sun L, Liu Y, Jiao L (2015) Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J Mater Chem A 3(3):982–985CrossRefGoogle Scholar
  39. 39.
    Cheng J, Lu Y, Qiu K, Yan H, Hou X, Xu J, Han L, Liu X, Kim J-K, Luo Y (2015) Mesoporous ZnCo2O4 nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Phys Chem Chem Phys 17(26):17016–17022PubMedCrossRefGoogle Scholar
  40. 40.
    Bai W, Tong H, Gao Z, Yue S, Xing S, Dong S, Shen L, He J, Zhang X, Liang Y (2015) Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J Mater Chem A 3(43):21891–21898CrossRefGoogle Scholar
  41. 41.
    Wei X, Chen D, Tang W (2007) Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method. Mater Chem Phys 103(1):54–58CrossRefGoogle Scholar
  42. 42.
    Han X, Liao F, Zhang Y, Chen H, Xu C (2018) Template-free synthesis of mesoporous ZnCo2O4 nanosheets and quasi-cubes via a simple solvothermal route. Mater Lett 217:56–59CrossRefGoogle Scholar
  43. 43.
    Che H, Liu A, Zhang X, Mu J, Bai Y, Hou J (2015) Three-dimensional hierarchical ZnCo2O4 flower-like microspheres assembled from porous nanosheets: hydrothermal synthesis and electrochemical properties. Ceram Int 41(6):7556–7564CrossRefGoogle Scholar
  44. 44.
    Naik KK, Rout CS (2015) Electrodeposition of ZnCo2O4 nanoparticles for biosensing applications. RSC Adv 5(97):79397–79404CrossRefGoogle Scholar
  45. 45.
    Sasaki T, Ebina Y, Kitami Y, Watanabe M, Oikawa T (2001) Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide. J Phys Chem B 105(26):6116–6121CrossRefGoogle Scholar
  46. 46.
    Omar FS, Numan A, Duraisamy N, Bashir S, Ramesh K, Ramesh S (2017) A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J Alloys Compd 716:96–105CrossRefGoogle Scholar
  47. 47.
    Wang Y-G, Li H-Q, Xia Y-Y (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18(19):2619–2623CrossRefGoogle Scholar
  48. 48.
    Bao F, Wang X, Zhao X, Wang Y, Ji Y, Zhang H, Liu X (2014) Controlled growth of mesoporous ZnCo2O4 nanosheet arrays on Ni foam as high-rate electrodes for supercapacitors. RSC Adv 4(5):2393–2397CrossRefGoogle Scholar
  49. 49.
    Rajesh JA, Min B-K, Kim J-H, Kim H, Ahn K-S (2016) Cubic Spinel AB2O4 type porous ZnCo2O4 microspheres: facile hydrothermal synthesis and their electrochemical performances in pseudocapacitor. J Electrochem Soc 163(10):A2418–A2427CrossRefGoogle Scholar
  50. 50.
    G. Zhou, J. Zhu, Y. Chen, L. Mei, X. Duan, G. Zhang, L. Chen, T. Wang, B. Lu, Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor, 2014.CrossRefGoogle Scholar
  51. 51.
    Wang S, Pu J, Tong Y, Cheng Y, Gao Y, Wang Z (2014) ZnCo2O4 nanowire arrays grown on nickel foam for high-performance pseudocapacitors. J Mater Chem A 2(15):5434–5440CrossRefGoogle Scholar
  52. 52.
    Wang Y, Zhao C, Fu W, Zhang Z, Zhang M, Zhou J, Pan X, Xie E (2016) Growth of zinc cobaltate nanoparticles and nanorods on reduced graphene oxide porous networks toward high-performance supercapacitor electrodes. J Alloys Compd 668:1–7CrossRefGoogle Scholar
  53. 53.
    Xu L, Zhao Y, Lian J, Xu Y, Bao J, Qiu J, Xu L, Xu H, Hua M, Li H (2017) Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 123:296–304CrossRefGoogle Scholar
  54. 54.
    Rajesh JA, Min B-K, Kim J-H, Kang S-H, Kim H, Ahn K-S (2017) Facile hydrothermal synthesis and electrochemical supercapacitor performance of hierarchical coral-like ZnCo2O4 nanowires. J Electroanal Chem 785:48–57CrossRefGoogle Scholar
  55. 55.
    Liu Q, Yang B, Liu J, Yuan Y, Zhang H, Liu L, Wang J, Li R (2016) Application of chemical doping and architectural design principles to fabricate nanowire Co2Ni3ZnO8 arrays for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 8(31):20157–20167PubMedCrossRefGoogle Scholar
  56. 56.
    Sahoo S, Shim J-J (2017) Facile synthesis of three-dimensional ternary ZnCo2O4/reduced graphene oxide/NiO composite film on nickel foam for next generation supercapacitor electrodes. ACS Sustain Chem Eng 5(1):241–251CrossRefGoogle Scholar
  57. 57.
    Singh AK, Sarkar D, Karmakar K, Mandal K, Khan GG (2016) High-Performance supercapacitor electrode based on cobalt oxide–manganese dioxide–nickel oxide ternary 1D hybrid nanotubes. ACS Appl Mater Interfaces 8(32):20786–20792PubMedCrossRefGoogle Scholar
  58. 58.
    Wu C, Cai J, Zhu Y, Zhang K (2017) Hybrid reduced graphene oxide nanosheet supported Mn–Ni–Co ternary oxides for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 9(22):19114–19123PubMedCrossRefGoogle Scholar
  59. 59.
    Maitra A, Das AK, Bera R, Karan SK, Paria S, Si SK, Khatua BB (2017) An approach to fabricate pdms encapsulated all-solid-state advanced asymmetric supercapacitor device with vertically aligned hierarchical Zn–Fe–Co ternary oxide nanowire and nitrogen doped graphene nanosheet for high power device applications. ACS Appl Mater Interfaces 9(7):5947–5958PubMedCrossRefGoogle Scholar
  60. 60.
    He P, Huang Q, Huang B, Chen T (2017) Controllable synthesis of Ni–Co–Mn multi-component metal oxides with various morphologies for high-performance flexible supercapacitors. RSC Adv 7(39):24353–24358CrossRefGoogle Scholar
  61. 61.
    Xiong G, He P, Liu L, Chen T, Fisher TS (2015) Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes. J Mater Chem A 3(45):22940–22948CrossRefGoogle Scholar
  62. 62.
    Li L, Zhang Y, Shi F, Zhang Y, Zhang J, Gu C, Wang X, Tu J (2014) Spinel manganese–nickel–cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications. ACS Appl Mater Interfaces 6(20):18040–18047PubMedCrossRefGoogle Scholar
  63. 63.
    Chen HC, Qin Y, Cao H, Song X, Huang C, Feng H, Zhao XS (2019) Synthesis of amorphous nickel–cobalt–manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater 17:194–203CrossRefGoogle Scholar
  64. 64.
    Hu W, Wei H, She Y, Tang X, Zhou M, Zang Z, Du J, Gao C, Guo Y, Bao D (2017) Flower-like nickel-zinc-cobalt mixed metal oxide nanowire arrays for electrochemical capacitor applications. J Alloys Compd 708:146–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Saghafi
    • 1
    Email author
  • S.A. Hosseini
    • 2
  • Sh. Zangeneh
    • 3
  • A.H. Moghanian
    • 1
  • Sh. Mohajerzadeh
    • 4
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.Department of Electrical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  3. 3.Department of Materials and Textile Engineering, Faculty of EngineeringRazi UniversityKermanshahIran
  4. 4.Nano-Electronics and Thin Film Lab, School of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations