pp 1–9 | Cite as

High conductivity and high density SrCe0.5Zr0.35Y0.1A0.05O3-δ (A = Gd, Sm) proton-conducting electrolytes for IT-SOFCs

  • Nikdalila Radenahmad
  • Shammya Afroze
  • Ahmed Afif
  • Atia T. Azad
  • Ji-Seop Shin
  • Jun-Young Park
  • Juliana Haji Zaini
  • Abul Kalam AzadEmail author
Original Paper


A novel Sr-based perovskite electrolyte, SrCe0.5Zr0.35Y0.1Gd0.05O3-δ, was successfully synthesized and characterized in comparison with SrCe0.5Zr0.35Y0.1Sm0.05O3-δ for possible use in proton-conducting solid oxide fuel cells. Indexing and subsequent Rietveld refinement confirm that both materials crystallize in the orthorhombic symmetry with Pbnm space group. Scanning electron microscopy images show the highly dense structure with the relative densities of 96% and 97% for Gd and Sm-doped sample, respectively. Electrochemical impedance measurements in wet 5% hydrogen at 700 °C shows that the conductivity of SrCe0.5Zr0.35Y0.1Gd0.05O3-δ and SrCe0.5Zr0.35Y0.1Sm0.05O3-δ were 5.701 ×10−3 S cm−1 and 5.257 × 10−3 S cm−1, respectively. The ionic conductivities of both samples increase in the wet hydrogen compared with that of dry hydrogen atmosphere. This indicates the enhancement of protonic conduction mechanism from introducing water in electrochemical impedance measurement. The proton conduction takes place at a lower temperature than conventional solid oxide fuel cell (SOFC) which makes SrCe0.5Zr0.35Y0.1(Gd/Sm)0.05O3-δ good electrolytes for intermediate-temperature solid oxide fuel cell (IT-SOFC).


Proton-conducting electrolyte Sr-based perovskites Electrochemical impedance spectroscopy IT-SOFC 


Funding information

N. Radenahmad is thankful to Universiti Brunei Darussalam graduate scholarship for the financial support in PhD study. The research facilities of the laboratory in Universiti Brunei Darussalam were supported by research grant no. UBD/OVAORI/CRGWG(006)/161201.


  1. 1.
    Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267. CrossRefPubMedGoogle Scholar
  2. 2.
    Atkinson A, Barnett S, Gorte RJ, Irvine JT, McEvoy A, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27. CrossRefPubMedGoogle Scholar
  3. 3.
    Iguchi TH, Sukamoto TT, Ata NS et al (2001) Protonic conduction in the single crystals of SrZr0.95M0.05O3 (M = Y, Sc, Yb, Er). Jpn J Appl Phys 40:4162–4163CrossRefGoogle Scholar
  4. 4.
    Radenahmad N, Afif A, Petra PI et al (2016) Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review. Renew Sust Energ Rev 57:1347–1358. CrossRefGoogle Scholar
  5. 5.
    Hossain S, Abdalla AM, Jamain SNB et al (2017) A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew Sust Energ Rev 79:750–764. CrossRefGoogle Scholar
  6. 6.
    Rashid NLRM, Samat AA, Jais AA et al (2019) Review on zirconate-cerate-based electrolytes for proton-conducting solid-oxide fuel cell. Ceram Int 45:6605–6615. CrossRefGoogle Scholar
  7. 7.
    Iwahara H (1992) Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications. Solid State Ionics 52:99–104. CrossRefGoogle Scholar
  8. 8.
    Naeem Khan M, Azad AK, Savaniu CD, Hing P, Irvine JTS (2017) Robust doped BaCeO3-δ electrolyte for IT-SOFCs. Ionics (Kiel) 23:2387–2396. CrossRefGoogle Scholar
  9. 9.
    Jingde LÜ, Ling W, Lihua FAN et al (2008) Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres. J Rare Earths 26:505–510CrossRefGoogle Scholar
  10. 10.
    Naeem Khan M, Savaniu CD, Azad AK et al (2017) Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3−δ proton conductor. Solid State Ionics 303:52–57. CrossRefGoogle Scholar
  11. 11.
    Medvedev DA, Lyagaeva JG, Gorbova EV et al (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79CrossRefGoogle Scholar
  12. 12.
    Azad AK, Kruth A, Irvine JTS (2014) Influence of atmosphere on redox structure of BaCe 0.9 Y 0.1 O 2.95--insight from neutron diffraction study. Int J Hydrog Energy 39:12804–12811CrossRefGoogle Scholar
  13. 13.
    Azad AK, Savaniu C, Tao S et al (2008) Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association. J Mater Chem 18:3414CrossRefGoogle Scholar
  14. 14.
    Bu J, Jönsson PG, Zhao Z (2015) Sintering behaviour of the protonic conductors BaZrxCe0.8-xLn0.2O3-δ (x= 0.8, 0.5, 0.1; Ln= Y, Sm, Gd, Dy) during the solid-state reactive-sintering process. Ceram Int 41:2558–2564. CrossRefGoogle Scholar
  15. 15.
    Radenahmad N, Afif A, Petra MI et al (2016) High conductivity and high density proton conducting Ba1-xSrxCe0.5Zr0.35Y0.1Sm0.05O3-δ (x= 0.5, 0.7, 0.9, 1.0) perovskites for IT-SOFC. Int J Hydrog Energy 41:11832–11841. CrossRefGoogle Scholar
  16. 16.
    Afif A, Radenahmad N, Lim CM et al (2016) Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x= 0.05, 0.1, 0.15, 0.2 & 0.25). Int J Hydrog Energy 41:11823–11831. CrossRefGoogle Scholar
  17. 17.
    Matsumoto H, Shimura T, Iwahara H et al (2006) Hydrogen separation using proton-conducting perovskites. J Alloys Compd 408–412:456–462. CrossRefGoogle Scholar
  18. 18.
    Song S-J, Wachsman ED, Rhodes J et al (2004) Hydrogen permeability of SrCe1-xMxO3-δ (x= 0.05, M= Eu, Sm). Solid State Ionics 167:99–105. CrossRefGoogle Scholar
  19. 19.
    Azad AK, Irvine JTS (2008) High density and low temperature sintered proton conductor BaCe 0.5Zr0.35Sc0.1Zn0.05O 3- δ. Solid State Ionics 179:678–682. CrossRefGoogle Scholar
  20. 20.
    Azad AK, Irvine JTS (2009) Location of deuterium positions in the proton-conducting perovskite BaCe0.4Zr0.4Sc0.2O2.90·xD2O by neutron powder diffraction. Chem Mater 21:215–222. CrossRefGoogle Scholar
  21. 21.
    Lagaeva J, Medvedev D, Demin A, Tsiakaras P (2015) Insights on thermal and transport features of BaCe0.8− xZrxY0.2O3− δ proton-conducting materials. J Power Sources 278:436–444. CrossRefGoogle Scholar
  22. 22.
    Liou Y-C, Yang S-L (2008) A simple and effective process for Sr0.995Ce0.95Y0.05O3−δ and BaCe0.9Nd0.1O3−δ solid electrolyte ceramics. J Power Sources 179:553–559. CrossRefGoogle Scholar
  23. 23.
    Kosacki I, Tuller HL (1995) Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors. Solid State Ionics 80:223–229. CrossRefGoogle Scholar
  24. 24.
    Kruth A, Mather GC, Jurado JR, Irvine JTS (2005) Anomalous variations of unit cell parameters with composition in proton conducting, ACeO3-type perovskite solid solutions. Solid State Ionics 176:703–712. CrossRefGoogle Scholar
  25. 25.
    Qi X, Lin Y (2000) Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ionics 130:149–156. CrossRefGoogle Scholar
  26. 26.
    Wei X, Kniep J, Lin YS (2009) Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. J Membr Sci 345:201–206. CrossRefGoogle Scholar
  27. 27.
    Hamakawa S, Li L, Li A, Iglesia E (2002) Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-α thin films. Solid State Ionics 48:71–81. CrossRefGoogle Scholar
  28. 28.
    Sumi H, Suda E, Mori M (2017) Blocking layer for prevention of current leakage for reversible solid oxide fuel cells and electrolysis cells with ceria-based electrolyte. Int J Hydrog Energy 42:4449–4455. CrossRefGoogle Scholar
  29. 29.
    Gilardi E, Fabbri E, Bi L et al (2017) Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity. J Phys Chem C 121:9739–9747. CrossRefGoogle Scholar
  30. 30.
    Amsif M, Marrero-Lopez D, Ruiz-Morales JC et al (2011) Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3-δ proton conductors. J Power Sources 196:3461–3469. CrossRefGoogle Scholar
  31. 31.
    Iwahara H, Yajima T, Hibino T et al (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61:65–69. CrossRefGoogle Scholar
  32. 32.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. CrossRefGoogle Scholar
  33. 33.
    Werner PE, Eriksson L, Westdahl M (1985) TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J Appl Crystallogr 18:367–370. CrossRefGoogle Scholar
  34. 34.
    Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction + FullProf. Phys B Condens Matter 192:55CrossRefGoogle Scholar
  35. 35.
    Kurita N, Fukatsu N, Ito K, Ohashi T (1995) Protonic conduction domain of indium-doped calcium zirconate. J Electrochem Soc 142:1552–1559CrossRefGoogle Scholar
  36. 36.
    Liu S, Tan X, Li K, Hughes R (2002) Synthesis of strontium cerates-based perovskite ceramics via water-soluble complex precursor routes. Ceram Int 28:327–335. CrossRefGoogle Scholar
  37. 37.
    Song S-J, Wachsman ED, Dorris SE, Balachandran U (2003) Defect structure and n-type electrical properties of SrCe0.95Eu0.05O3-δ. J Electrochem Soc 150:A1484–A1490. CrossRefGoogle Scholar
  38. 38.
    Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462. CrossRefGoogle Scholar
  39. 39.
    Bu J, Jönsson PG, Zhao Z (2014) Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3-δ (Ln= Y, Sm, Gd, Dy) electrolytes. J Power Sources 272:786–793. CrossRefGoogle Scholar
  40. 40.
    Gu Y-J, Liu Z-G, Ouyang J-H, et al (2013) Structure and electrical conductivity of BaCe0.85Ln0.15O3 − δ (Ln= Gd, Y, Yb) ceramics. Electrochim Acta 105:547–553. doi: CrossRefGoogle Scholar
  41. 41.
    Shin S, Huang HH, Ishigame M, Iwahara H (1990) Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3. Solid State Ionics 40–41:910–913. CrossRefGoogle Scholar
  42. 42.
    Oh T, Yoon H, Wachsman ED (2009) Effect of Eu dopant concentration in SrCe1−xEuxO3−δ on ambipolar conductivity. Solid State Ionics 180:1233–1239. CrossRefGoogle Scholar
  43. 43.
    Liu C, Huang J-J, Fu Y-P et al (2015) Effect of potassium substituted for A-site of SrCe0.95Y0.05O3 on microstructure, conductivity and chemical stability. Ceram Int 41:2948–2954. CrossRefGoogle Scholar
  44. 44.
    Satapathy A, Sinha E (2019) A comparative proton conductivity study on Yb-doped BaZrO3 perovskite at intermediate temperatures under wet N2 environment. J Alloys Compd 772:675–682. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nikdalila Radenahmad
    • 1
  • Shammya Afroze
    • 1
  • Ahmed Afif
    • 1
  • Atia T. Azad
    • 2
  • Ji-Seop Shin
    • 3
  • Jun-Young Park
    • 3
  • Juliana Haji Zaini
    • 1
  • Abul Kalam Azad
    • 1
    Email author
  1. 1.Faculty of Integrated TechnologiesUniversiti Brunei DarussalamGadongBrunei Darussalam
  2. 2.Department of Chemical EngineeringUniversity of AberdeenScotlandUK
  3. 3.Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulRepublic of Korea

Personalised recommendations