Advertisement

Ionics

pp 1–10 | Cite as

Nafion-assisted synthesis of palladium nanonetworks as efficient electrocatalysts for hydrogen evolution reaction

  • Yuning QuEmail author
  • Shuya Wen
  • Jianhong Chen
  • Honghui Shen
  • Wenjie Yu
  • Dan Wei
  • Jianguo YuEmail author
  • Young-Uk Kwon
  • Yongnan Zhao
Original Paper
  • 1 Downloads

Abstract

In this work, we synthesized a Pd nanonetwork (PdNN) catalyst by employing Nafion as structure-directing agent. The nanonetwork-like structure is interconnected by Pd particles. Moreover, the morphologies and the sizes of PdNN samples can be tunable by adjusting concentrations of Pd precursor. The as-prepared PdNN catalysts have superior hydrogen evolution reaction (HER) performance to that of commercial Pd/C. Among them, PdNN-4.5 catalysts exhibit the most excellent hydrogen evolution performance, which contains an overpotential of 59 mV at 10 mA cm-2 and a Tafel slope of only 54 mV dec-1. Besides, a super stability is also displayed for PdNN-4.5 catalysts. The significant improvement in the HER performance of the PdNN-4.5 catalyst may be attributed to the nanonetwork-like structure, the sizes, and the interaction between the Pd catalysts and Nafion. Thus, this work can provide a simple method for synthesizing the highly efficient Pd-based catalyst for HER.

Keywords

Hydrogen evolution reaction Pd nanonetwork structure Electrocatalyst Nafion Catalytic activity 

Notes

Funding information

This research was supported by the National Students’ Platform for Innovation and Entrepreneurship Training Program (No. 201510058037), the National Science Foundation of China (51603147), and Science and Technology Correspondent Project of Tianjin (18JCTPJC61300).

Supplementary material

11581_2019_3276_MOESM1_ESM.doc (8.2 mb)
ESM 1 (DOC 11204 kb)

References

  1. 1.
    Zheng L, Zheng S, Wei H, Du L, Zhu Z, Chen J, Yang D (2019) Palladium/bismuth/copper hierarchical nano-architectures for efficient hydrogen evolution and stable hydrogen detection. ACS Appl Mater Interfaces 11:6248–6256PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal 7:7855–7865CrossRefGoogle Scholar
  3. 3.
    Li M, Wang C, Hu S, Wu H, Feng C, Zhang Y (2019) Nitrogen, phosphorus co-doped mesoporous carbon materials as efficient catalysts for oxygen reduction reaction. IonicsGoogle Scholar
  4. 4.
    Vasic M, Cebela M, Pasti I, Amaral L, Hercigonja R, Santos DMF, Sljukic B (2018) Efficient hydrogen evolution electrocatalysis in alkaline medium using Pd-modified zeolite X. Electrochim Acta 259:882–892CrossRefGoogle Scholar
  5. 5.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang Y, Senthil RA, Pan J, Sun Y, Osman S, Khan A, Liu X (2019) Facile construction of N-doped Mo2C@CNT composites with 3D nanospherical structures as an efficient electrocatalyst for hydrogen evolution reaction. IonicsGoogle Scholar
  7. 7.
    Guan Y, Feng Y, Wan J, Yang X, Fang L, Gu X, Liu R, Huang Z, Li J, Luo J, Li C, Wang Y (2018) Ganoderma-like MoS2/NiS2 with single platinum atoms doping as an efficient and stable hydrogen evolution reaction catalyst. Small 14:1800697CrossRefGoogle Scholar
  8. 8.
    Choi W, Hu G, Kwak K, Kim M, D-e J, Choi J-P, Lee D (2018) Effects of metal-doping on hydrogen evolution reaction catalyzed by MAu24 and M2Au36 nanoclusters (M = Pt, Pd). ACS Appl Mater Interfaces 10:44645–44653PubMedCrossRefGoogle Scholar
  9. 9.
    Tan RW, Wu DJ, Xu SH, Zhu YP, Xiong DY, Wang LW, Yang PX, Chu PK (2018) Electrocatalytic hydrogen evolution of palladium nanoparticles electrodeposited on nanographene coated macroporous electrically conductive network. Int J Hydrog Energy 43:2171–2183CrossRefGoogle Scholar
  10. 10.
    Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29:1605502CrossRefGoogle Scholar
  11. 11.
    Morales-Guio CG, Stern L-A, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569PubMedCrossRefGoogle Scholar
  12. 12.
    Liu Y-Y, Zhang H-P, Zhu B, Zhang H-W, Fan L-D, Chai X-Y, Zhang Q-L, Liu J-H, He C-X (2018) C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 283:221–227CrossRefGoogle Scholar
  13. 13.
    Yu S, Zhao X, Su G, Wang Y, Wang Z, Han K, Zhu H (2019) Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag@Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell. IonicsGoogle Scholar
  14. 14.
    Yuan S, Pu Z, Zhou H, Yu J, Amiinu IS, Zhu J, Liang Q, Yang J, He D, Hu Z, Van Tendeloo G, Mu S (2019) A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 59472–480Google Scholar
  15. 15.
    Li W, Hu Z-Y, Zhang Z, Wei P, Zhang J, Pu Z, Zhu J, He D, Mu S, Van Tendeloo G (2019) Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J Catal 375:164–170CrossRefGoogle Scholar
  16. 16.
    Pu Z, Zhao J, Amiinu IS, Li W, Wang M, He D, Mu S (2019) A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci 12:952–957CrossRefGoogle Scholar
  17. 17.
    Pu Z, Amiinu IS, Kou Z, Li W, Mu S (2017) RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew Chem Int Ed 56:11559–11564CrossRefGoogle Scholar
  18. 18.
    Zhang X-F, Chen Y, Zhang L, Wang A-J, Wu L-J, Wang Z-G, Feng J-J (2018) Poly-l-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution. J Colloid Interface Sci 516:325–331PubMedCrossRefGoogle Scholar
  19. 19.
    Liu H, Koenigsmann C, Adzic RR, Wong SS (2014) Probing ultrathin one-dimensional Pd-Ni nanostructures as oxygen reduction reaction catalysts. ACS Catal 4:2544–2555CrossRefGoogle Scholar
  20. 20.
    Antolini E (2009) Palladium in fuel cell catalysis. Sci Energy Environ Sci 2:915–931CrossRefGoogle Scholar
  21. 21.
    Yin Z, Zheng H, Ma D, Bao X (2009) Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C 113:1001–1005CrossRefGoogle Scholar
  22. 22.
    Liu B, Jin L, Zhong W, Lopes A, Suib SL, He J (2018) Ultrafine and ligand-free precious metal (Ru, Ag, Au, Rh and Pd) nanoclusters supported on phosphorus-doped carbon. Chem Eur J 24:2565–2569PubMedCrossRefGoogle Scholar
  23. 23.
    Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N (2010) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6:28PubMedCrossRefGoogle Scholar
  24. 24.
    Sadhanala HK, Nandan R, Nanda KK (2016) Nitrogen-assisted electroless assembling of 3D nanodendrites consisting of Pd and N-doped carbon nanoparticles as bifunctional catalysts. Green Chem 18:2115–2121CrossRefGoogle Scholar
  25. 25.
    Li S-S, Hu Y-Y, Feng J-J, Lv Z-Y, Chen J-R, Wang A-J (2014) Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. Int J Hydrog Energy 39:3730–3738CrossRefGoogle Scholar
  26. 26.
    Chao T, Luo X, Chen W, Jiang B, Ge J, Lin Y, Wu G, Wang X, Hu Y, Zhuang Z, Wu Y, Hong X, Li Y (2017) Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew Chem Int Ed 56:16047–16051CrossRefGoogle Scholar
  27. 27.
    Li Y, Wang W, Xia K, Zhang W, Jiang Y, Zeng Y, Zhang H, Jin C, Zhang Z, Yang D (2015) Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small 11:4745–4752PubMedCrossRefGoogle Scholar
  28. 28.
    Yin K, Cheng Y, Jiang B, Liao F, Shao M (2018) Palladium-silicon nanocomposites as a stable electrocatalyst for hydrogen evolution reaction. J Colloid Interface Sci 522:242–248PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Y, Choi S-I, Zhao X, Xie S, Peng H-C, Chi M, Huang CZ, Xia Y (2014) Polyol synthesis of ultrathin Pd nanowires via attachment-based growth and their enhanced activity towards formic acid oxidation. Adv Funct Mater 24:131–139CrossRefGoogle Scholar
  30. 30.
    Zong Z, Xu K, Li D, Tang Z, He W, Liu Z, Wang X, Tian Y (2018) Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J Catal 361:168–176CrossRefGoogle Scholar
  31. 31.
    Li D-N, He Y-M, Feng J-J, Zhang Q-L, Zhang L, Wu L, Wang A-J (2018) Facile synthesis of prickly platinum-palladium core-shell nanocrystals and their boosted electrocatalytic activity towards polyhydric alcohols oxidation and hydrogen evolution. J Colloid Interface Sci 516:476–483PubMedCrossRefGoogle Scholar
  32. 32.
    Ge J, Wei P, Wu G, Liu Y, Yuan T, Li Z, Qu Y, Wu Y, Li H, Zhuang Z, Hong X, Li Y (2018) Ultrathin palladium nanomesh for electrocatalysis. Angew Chem Int Ed 130:3493–3496CrossRefGoogle Scholar
  33. 33.
    Begum H, Ahmed MS, Jeon S (2017) Highly efficient dual active palladium nanonetwork electrocatalyst for ethanol oxidation and hydrogen evolution. ACS Appl Mater Interfaces 9:39303–39311PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang X, Wu D, Cheng D (2017) Component-dependent electrocatalytic activity of PdCu bimetallic nanoparticles for hydrogen evolution reaction. Electrochim Acta 246:572–579CrossRefGoogle Scholar
  35. 35.
    Bhowmik T, Kundu MK, Barman S (2016) Palladium nanoparticle-graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy. ACS Catal 6:1929–1941CrossRefGoogle Scholar
  36. 36.
    Sheng G, Chen J, Li Y, Ye H, Hu Z, Fu X-Z, Sun R, Huang W, Wong C-P (2018) Flowerlike NiCo2S4 hollow sub-microspheres with mesoporous nanoshells support Pd nanoparticles for enhanced hydrogen evolution reaction electrocatalysis in both acidic and alkaline conditions. ACS Appl Mater Interfaces 10:22248–22256PubMedCrossRefGoogle Scholar
  37. 37.
    Liao H, Wei C, Wang J, Fisher A, Sritharan T, Feng Z, Xu ZJ (2017) A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media. Adv Energy Mater 7:1701129CrossRefGoogle Scholar
  38. 38.
    Seen AJ (2001) Nafion: an excellent support for metal-complex catalysts. J Mol Catal A Chem 177:105–112CrossRefGoogle Scholar
  39. 39.
    Tang H, Pan M, Jiang S, Wan Z, Yuan R (2005) Self-assembling multi-layer Pd nanoparticles onto NafionTM membrane to reduce methanol crossover. Colloids Surf A 262:65–70CrossRefGoogle Scholar
  40. 40.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4586PubMedCrossRefGoogle Scholar
  41. 41.
    Cheng N, Li H, Li G, Lv H, Mu S, Sun X, Pan M (2011) Highly active Pt@Au nanoparticles encapsulated in perfluorosulfonic acid for the reduction of oxygen. Chem Commun 47:12792–12794CrossRefGoogle Scholar
  42. 42.
    Lv Z-S, Zhu X-Y, Meng H-B, Feng J-J, Wang A-J (2019) One-pot synthesis of highly branched Pt@Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction. J Colloid Interface Sci 538:349–356PubMedCrossRefGoogle Scholar
  43. 43.
    Sun H, Sun G, Wang S, Liu J, Zhao X, Wang G, Xu H, Hou S, Xin Q (2005) Pd electroless plated NafionR membrane for high concentration DMFCs. J Membr Sci 259:27–33CrossRefGoogle Scholar
  44. 44.
    Niu H-J, Zhang L, Feng J-J, Zhang Q-L, Huang H, Wang A-J (2019) Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J Colloid Interface Sci 552:744–751PubMedCrossRefGoogle Scholar
  45. 45.
    Li D-N, Wang A-J, Wei J, Zhang Q-L, Feng J-J (2018) Dentritic platinum-palladium/palladium core-shell nanocrystals/reduced graphene oxide: one-pot synthesis and excellent electrocatalytic performances. J Colloid Interface Sci 514:93–101PubMedCrossRefGoogle Scholar
  46. 46.
    Cheng M, Geng H, Yang Y, Zhang Y, Li CC (2019) Optimization of the hydrogen-adsorption free energy of Ru-based catalysts towards high-efficiency hydrogen evolution reaction at all pH. Chem Eur J 25:8579–8584PubMedCrossRefGoogle Scholar
  47. 47.
    Niu H-J, Chen H-Y, Wen G-L, Feng J-J, Zhang Q-L, Wang A-J (2019) One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction. J Colloid Interface Sci 539:525–532PubMedCrossRefGoogle Scholar
  48. 48.
    Huang X-Y, You L-X, Zhang X-F, Feng J-J, Zhang L, Wang A-J (2019) L-proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 299:89–97CrossRefGoogle Scholar
  49. 49.
    Chen H-Y, Jin M-X, Zhang L, Wang A-J, Yuan J, Zhang Q-L, Feng J-J (2019) One-pot aqueous synthesis of two-dimensional porous bimetallic PtPd alloyed nanosheets as highly active and durable electrocatalyst for boosting oxygen reduction and hydrogen evolution. J Colloid Interface Sci 543:1–8PubMedCrossRefGoogle Scholar
  50. 50.
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang L-N, Li S-H, Tan H-Q, Khan SU, Ma Y-Y, Zang H-Y, Wang Y-H, Li Y-G (2017) MoP/Mo2C@C: A new combination of electrocatalysts for highly efficient hydrogen evolution over the entire pH range. ACS Appl Mater Interfaces 9:16270–16279PubMedCrossRefGoogle Scholar
  52. 52.
    Xu Y-F, Gao M-R, Zheng Y-R, Jiang J, Yu S-H (2013) Nickel/nickel(II) oxide nanoparticles anchored onto cobalt (IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew Chem Int Ed 52:8546–8550CrossRefGoogle Scholar
  53. 53.
    Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X, Yin Y (2017) Self-templated fabrication of Co-MoO2 nanocages for enhanced oxygen evolution. Adv Funct Mater 27:1702324CrossRefGoogle Scholar
  54. 54.
    Wang A-J, Liu L, Lin X-X, Yuan J, Feng J-J (2017) One-pot synthesis of 3D freestanding porous PtAg hollow chain-like networks as efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 245:883–892CrossRefGoogle Scholar
  55. 55.
    Liang Q, Jin H, Wang Z, Xiong Y, Yuan S, Zeng X, He D, Mu S (2019) Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 57:746–752CrossRefGoogle Scholar
  56. 56.
    Pu Z, Amiinu IS, He D, Wang M, Li G, Mu S (2018) Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale 10:12407–12412PubMedCrossRefGoogle Scholar
  57. 57.
    Xu Y, Xu R, Cui J, Liu Y, Zhang B (2012) One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance. Chem Commun 48:3881–3883CrossRefGoogle Scholar
  58. 58.
    Lan F, Wang D, Lu S, Zhang J, Liang D, Peng S, Liu Y, Xiang Y (2013) Ultra-low loading Pt decorated coral-like Pd nanochain networks with enhanced activity and stability towards formic acid electrooxidation. J Mater Chem A 1:1548–1552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuning Qu
    • 1
    Email author
  • Shuya Wen
    • 2
  • Jianhong Chen
    • 3
  • Honghui Shen
    • 1
  • Wenjie Yu
    • 1
  • Dan Wei
    • 2
  • Jianguo Yu
    • 1
    Email author
  • Young-Uk Kwon
    • 3
    • 4
  • Yongnan Zhao
    • 3
  1. 1.School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Green Chemical Technology and Process EngineeringTiangong UniversityTianjinPeople’s Republic of China
  2. 2.School of Environmental Science and Engineering & State Key Lab Separat Membranes & Membrane ProcTiangong UniversityTianjinPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringTiangong UniversityTianjinPeople’s Republic of China
  4. 4.Department of ChemistrySungkyunkwan UniversitySuwonKorea

Personalised recommendations