pp 1–10 | Cite as

Polycationic bimetallic oxide CoGa2O4 with spinel structure: dominated pseudocapacitance, dual-energy storage mechanism, and Li-ion hybrid supercapacitor application

  • Zheng-Hua He
  • Jian-Fei Gao
  • Ling-Bin KongEmail author
Original Paper


In this work, the polycationic bimetallic oxide CoGa2O4 with spinel structure was successfully prepared by simple hydrothermal and subsequent calcination methods. Following, half-cell electrochemical test showed that this material presented a hybrid energy storage mechanism, namely combining Ga alloying and Co3O4 conversion. The combination of the two energy story mechanisms makes CoGa2O4 have higher conductivity than other single metal oxides. According to the calculation of the relationship between peak current and sweep speed, the b = 0.93 of CoGa2O4 is obtained, and its electrochemical behavior is closer to capacitive behavior than that of Co3O4 and NiCo2O4. This makes it have excellent rate performance and cycle stability. Consequently, the CoGa2O4//AC Li-ion hybrid supercapacitor (LIHSC) device exhibits excellent cycling stability (capacity retention of 83% after 8000 cycles), high-energy density of 111.5 Wh kg−1 (at 100 W kg−1), and high power density of 3927 W kg−1 (at 24 Wh kg−1).


Dual-energy storage mechanism Polycationic bimetallic oxide Dominated pseudocapacitance High electrical conductivity Lithium-ion hybrid supercapacitor 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 51762031, No. 51971104).

Supplementary material

11581_2019_3249_MOESM1_ESM.docx (769 kb)
ESM 1 (DOCX 266 kb)


  1. 1.
    Chen ZK, Lang JW, Liu LY, Kong LB (2017) Preparation of a NbN/graphene nanocomposite by solution impregnation and its application in high-performance Li-ion hybrid capacitors. RSC Adv 7:19967–19975CrossRefGoogle Scholar
  2. 2.
    Mao-Cheng Liu, Yan Xu, Yu-Xia Hu, Qing-Qing Yang, Ling-Bin Kong, Wen-Wu Liu, Wen-Jun Niu, Yu-Lun Chueh, (2018) Electrostatically Charged MoS/Graphene Oxide Hybrid Composites for Excellent Electrochemical Energy Storage Devices . ACS Applied Materials & Interfaces 10 (41):35571-35579Google Scholar
  3. 3.
    Zhuang Wang, Jianmin Gu, Siheng Li, Guang Cong Zhang, Jinling Zhong, Xiaoyong Fan, Deling Yuan, Shoufeng Tang, Debao Xiao, (2018) One-Step Polyoxometalates-Assisted Synthesis of Manganese Dioxide for Asymmetric Supercapacitors with Enhanced Cycling Lifespan. ACS Sustainable Chemistry & Engineering 7 (1):258-264Google Scholar
  4. 4.
    Jianmin Gu, Xiaoyong Fan, Xin Liu, Siheng Li, Zhuang Wang, Shoufeng Tang, Deling Yuan, (2017) Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chemical Engineering Journal 324:35-43CrossRefGoogle Scholar
  5. 5.
    Chen L, Chen L, Zhai W, Li D, Lin Y, Guo S, Feng J, Zhang L, Song L, Si P, Ci L (2019) Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. J Power Sources 413:302–309CrossRefGoogle Scholar
  6. 6.
    Ding R, Qi L, Wang H (2013) An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim Acta 114:726–735CrossRefGoogle Scholar
  7. 7.
    Tang X, Liu H, Guo X, Wang S, Wu W, Mondal AK, Wang C, Wang G (2018) A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Mater Chem Front 2:1811–1821CrossRefGoogle Scholar
  8. 8.
    Chen Z, Li H, Lu X, Wu L, Jiang J, Jiang S, Wang J, Dou H, Zhang X (2018) Nitrogenated urchin-like Nb2O5 microspheres with extraordinary pseudocapacitive properties for lithium-ion capacitors. ChemElectroChem 5:1516–1524CrossRefGoogle Scholar
  9. 9.
    Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wang X, Bi X, Zheng S, Wang S, Zhang Y, Du H, Lu J (2018) High-rate performance and ultralong cycle life enabled by hybrid organic-inorganic vanadyl ethylene glycolate for lithium-ion batteries. Adv Energy Mater 8:1801978CrossRefGoogle Scholar
  11. 11.
    Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R, Zheng JP, Zhang C (2018) Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater 30:1705670CrossRefGoogle Scholar
  12. 12.
    Ma K, Jiang H, Hu Y, Li C (2018) 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries. Adv Funct Mater 28:1804306CrossRefGoogle Scholar
  13. 13.
    Wu L, Lang J, Zhang P, Zhang X, Guo R, Yan X (2016) Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J Mater Chem A 4:18392–18400CrossRefGoogle Scholar
  14. 14.
    Han N, Chen D, Pang Y, Han Z, Xia Y, Jiao X (2017) Structural regulation of ZnGa2O4 nanocubes for achieving high capacity and stable rate capability as an anode material of lithium ion batteries. Electrochim Acta 235:295–303CrossRefGoogle Scholar
  15. 15.
    Li Z, Li B, Yin L, Qi Y (2014) Prussion blue-supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl Mater Interfaces 6:8098–8107PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zheng H, Xu S, Li L, Feng C, Wang S (2016) Synthesis of NiCo2O4 microellipsoids as anode material for lithium-ion batteries. J Electron Mater 45:4966–4972CrossRefGoogle Scholar
  18. 18.
    Pu J, Liu Z, Ma Z, Wang J, Zhang L, Chang S, Wu W, Shen Z, Zhang H (2016) Structure design of NiCo2O4 electrodes for high performance pseudocapacitors and lithium-ion batteries. J Mater Chem A 4:17394–17402CrossRefGoogle Scholar
  19. 19.
    Mo Y, Ru Q, Chen J, Song X, Guo L, Hu S, Peng S (2015) Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance. J Mater Chem A 3:19765–19773CrossRefGoogle Scholar
  20. 20.
    Liu D, Mo X, Li K, Liu Y, Wang J, Yang T (2017) The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell. J Power Sources 359:355–362CrossRefGoogle Scholar
  21. 21.
    Chen X, Chai H, Cao Y, Jia D, Liu A, Zhou W (2018) Excellent cycle life of electrode materials based on hierarchical mesoporous CoGa2O4 microspheres. Chem Eng J 354:932–940CrossRefGoogle Scholar
  22. 22.
    Xu Z, Yan SC, Shi Z, Yao YF, Zhou P, Wang HY, Zou ZG (2016) Adjusting the crystallinity of mesoporous spinel CoGa2O4 for efficient water oxidation. ACS Appl Mater Interfaces 8:12887–12893PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zhao X, Zhao Y, Liu Z, Yang Y, Sui J, Wang HE, Cai W, Cao G (2018) Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem Eng J 354:1164–1173CrossRefGoogle Scholar
  24. 24.
    Jiao X, Hao Q, Xia X, Yao D, Ouyang Y, Lei W (2018) Boosting long-cycle-life energy storage with holey graphene supported TiNb2O7 network nanostructure for lithium ion hybrid supercapacitors. J Power Sources 403:66–75CrossRefGoogle Scholar
  25. 25.
    Zhuang B, Guo Z, Chu W, Cao Z, Bold T, Gao Y (2018) Mesoporous carbon film inlaid with Li3V2(PO4)3 nanoclusters through delaying sol-gel method for high performance lithium-ion hybrid supercapacitors. Electrochim Acta 283:1589–1599CrossRefGoogle Scholar
  26. 26.
    Gao JF, Zhang WB, Zhao ZY, Kong LB (2018) Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N. Sustainable Energy & Fuels 2:1178–1188CrossRefGoogle Scholar
  27. 27.
    Liu S, Hui KS, Hui KN, Li HF, Ng KW, Xu J, Tang Z, Jun SC (2017) An asymmetric supercapacitor with excellent cycling performance realized by hierarchical porous NiGa2O4 nanosheets. J Mater Chem A 5:19046–19053CrossRefGoogle Scholar
  28. 28.
    Chu X, Wang, Bai L, Dong Y, Sun W, Zhang W (2018) Trimethylamine and ethanol sensing properties of NiGa2O4 nano-materials prepared by co-precipitation method. Sensors Actuators B Chem 255:2058–2065CrossRefGoogle Scholar
  29. 29.
    Mo Y, Ru Q, Song X, Hu S, Guo L, Chen X (2015) 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries. Electrochim Acta 176:575–585CrossRefGoogle Scholar
  30. 30.
    Chen H, Li GD, Fan M, Gao Q, Hu J, Ao S, Wei C, Zou X (2017) Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M=Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sensors Actuators B Chem 240:689–696CrossRefGoogle Scholar
  31. 31.
    Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong CP, Kang F, Lin Z, Li B (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305CrossRefGoogle Scholar
  32. 32.
    Mo Y, Qiang R, Chen J, Xiong S, Guo L, Hu S, Peng S (2015) Three-dimensional NiCo 2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance. J Mater Chem A 3:19765–19773CrossRefGoogle Scholar
  33. 33.
    Huang Y, Ouyang J, Tang X, Yang Y, Qian J, Lu J, Xiao L, Zhuang L (2019) NiGa2O4/rGO composite as long-cycle-life anode material for lithium-ion batteries. ACS Appl Mater Interfaces 11:8025–8031PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Li B, Feng J, Qian Y, Xiong S (2015) Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J Mater Chem A 3:10336–10344CrossRefGoogle Scholar
  35. 35.
    Ju Z, Ma G, Zhao Y, Xing Z, Qiang Y, Qian Y (2015) A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for Li-ion batteries. Part Part Syst Charact 32:1012–1019CrossRefGoogle Scholar
  36. 36.
    Liu Y, Mi C, Su L, Zhang X (2008) Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim Acta 53:2507–2513CrossRefGoogle Scholar
  37. 37.
    Tang X, Huang X, Huang Y, Gou Y, Pastore J, Yang Y, Xiong Y, Qian J, Brock JD, Lu J, Xiao L, Abruna HD, Zhuang L (2018) High-performance Ga2O3 anode for lithium-ion batteries. ACS Appl Mater Interfaces 10:5519–5526PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Saint J, Morcrette M, Larcher D, Tarascon JM (2005) Exploring the Li–Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ionics 176:189–197CrossRefGoogle Scholar
  39. 39.
    Mondal AK, Su D, Chen S, Xie X, Wang G (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6:14827–14835PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yang D, Zhao Q, Huang L, Xu B, Nanjundan AK, Xiu SZ (2018) Encapsulation of NiCo2O4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. J Mater Chem A 6:14146–14154CrossRefGoogle Scholar
  41. 41.
    Zhu Y, Yang L, Jian S, Chen Y, Gu H, Wei J, Zhen Z (2017) Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv Energy Mater 7:1701222CrossRefGoogle Scholar
  42. 42.
    Huang H, Kundu D, Yan R, Tervoort E, Chen X, Pan L, Oschatz M, Antonietti M, Niederberger M (2018) Fast Na-ion intercalation in zinc vanadate for high-performance Na-ion hybrid capacitor. Adv Energy Mater 8:1802800CrossRefGoogle Scholar
  43. 43.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
  44. 44.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Li J, Li Z, Ning F, Zhou L, Zhang R, Shao M, Wei M (2018) Ultrathin mesoporous Co3O4 nanosheet arrays for high-performance lithium-ion batteries. ACS Omega 3:1675–1683PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Xu J, Liao Z, Zhang J, Gao B, Chu PK, Huo K (2018) Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors. J Mater Chem A 6:6916–6921CrossRefGoogle Scholar
  47. 47.
    Li G, Yin Z, Guo H, Wang Z, Yan G, Yang Z, Liu Y, Ji X, Wang J (2019) Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor. Adv Energy Mater 9:1802878CrossRefGoogle Scholar
  48. 48.
    Muralee Gopi Chandu VV, Singh Rana PJ, Padma R, Vinodh R, Kim HJ (2019) Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. J Mater Chem A 7:6374–6386CrossRefGoogle Scholar
  49. 49.
    Jin L, Gong R, zhang w x y, Zheng J, Zh X, Zhang C, Xia YY, Zheng JP (2019) Toward high energy-density and long cycling-lifespan lithium ion capacitor: a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode. J Mater Chem A 7:8234–8244CrossRefGoogle Scholar
  50. 50.
    Lu C, Wang X, Zhang X, Peng H, Zhang Y, Wang G, Wang Z, Cao G, Umirov N, Bakenov Z (2017) Effect of graphene nanosheets on electrochemical performance of Li4Ti5O12 in lithium-ion capacitors. Ceram Int 43:6554–6562CrossRefGoogle Scholar
  51. 51.
    Wang X, Yan C, Yan J, Sumboja A, Lee PS (2015) Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 11:765–772CrossRefGoogle Scholar
  52. 52.
    Wang X, Li G, Tjandra R, Fan X, Xiao X, Yu A (2015) Fast lithium-ion storage of Nb2O5 nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Adv 5:41179–41185CrossRefGoogle Scholar
  53. 53.
    Aravindan V, Shubha N, Ling WC, Madhavi S (2013) Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J Mater Chem A 1:6145–6151CrossRefGoogle Scholar
  54. 54.
    Jiao X, Hao Q, Xia X, Wu Z, Lei W (2019) Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors. Chem Commun 55:2692–2695CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations