pp 1–10 | Cite as

A simple and efficient one-pot synthesis of SiO2 nanotubes with stable structure and controlled aspect ratios for anode materials of lithium-ion batteries

  • Jie Tang
  • Xinyi DaiEmail author
  • Fuzhong WuEmail author
  • Yi Mai
  • Xiao Wang
  • Huixin Jin
  • Yijing Gu
  • Yanfang Xie
Original Paper


Materials with nanotubular structure have attracted wide attention in electrochemical energy storage due to their good structural stability, high specific surface area, and internal and external wall activity. Here, we report a simple and efficient one-pot method for the synthesis of SiO2 nanotubes with controlled aspect ratios. The influence of parameters, such as the monomer concentration and reaction time on the aspect ratio, were inspected systematically. The results confirmed that the aspect ratio of SiO2 nanotubes increases with the reaction time before tetraethyl orthosilicate is added, and the length of SiO2 nanotubes can also be altered by tuning the hydrazine hydrate/NiCl2 ratio. The SiO2 nanotubes as an anode material for lithium-ion batteries exhibited an initial discharge capacity of 625.5 mAh g−1 and maintained 232.5 mAh g−1 after 100 cycles at 40 mA/g, which is 75.7% relative to the second cycle, showing good electrochemical performance.


SiO2 nanotubes One-pot method Aspect ratio Electrochemical performance 


Funding information

This project was supported by the National Natural Science Foundation of China under Grant Nos. 51702061, 51564003, and 51704082; the Major Research Project of The Innovation Group of the Guizhou Provincial Education Department under Grant No. KY[2017]030; the Special Funds for Training Outstanding Young Scientists and Technicians in Guizhou under Grant No. (2015)16; the Guizhou Provincial Education Department Youth Science and Technology Talent Development Project under Grant No. KY[2017]111; the Introduced Talents Project of Guizhou University under Grant Nos. (2014)47 and (2016)31; the Guizhou Science and Technology Cooperation Project under Grant Nos. LH[2015]7648, LH[2017]7246, and [2017]5788.


  1. 1.
    Lou XW, Archer LA, Yang ZC (2008) Hollow micro−/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019CrossRefGoogle Scholar
  2. 2.
    Wei W, Wang ZH, Liu Z, Liu Y, He L, Chen DZ, Umar A, Guo L, Li JH (2013) Metal oxide hollow nanostructures: fabrication and Li storage performance. J Power Sources 238:376–387CrossRefGoogle Scholar
  3. 3.
    Qi J, Lai XY, Wang JY, Tang HJ, Ren H, Yang Y, Jin Q, Zhang LJ, Yu RB, Ma GH, Su ZG, Zhao HJ, Wang D (2015) Multi-shelled hollow micro−/nanostructures. Chem Soc Rev 44(19):6749–6773CrossRefGoogle Scholar
  4. 4.
    Zhou XS, Yu L, Yu XY, Lou XW (2016) Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv Energy Mater 6(22):1601177CrossRefGoogle Scholar
  5. 5.
    Zhou L, Zhuang ZC, Zhao HH, Lin MT, Zhao DY, Mai LQ (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29(20):1602914CrossRefGoogle Scholar
  6. 6.
    Wang H, Wu P, Qu MT, Si Y, Tang YW, Zhou YM, Lu TH (2015) Highly reversible and fast lithium storage in graphene-wrapped SiO2 nanotube network. ChemElectroChem 2(4):508–511CrossRefGoogle Scholar
  7. 7.
    Prasath A, Sharma AS, Elumalai P (2019) Nanostructured SiO2@NiO heterostructure derived from laboratory glass waste as anode material for lithium-ion battery. Ionics 25(3):1015–1023CrossRefGoogle Scholar
  8. 8.
    Qiao WY, Bai HC, Li M, Yang LQ, Wang CJ (2018) Structure and electronic properties of the double-wall nanotubes constructed from SiO2 nanotubes encapsulated inside armchair carbon nanotubes. Chemistryselect 3(2):765–772CrossRefGoogle Scholar
  9. 9.
    Favors Z, Wang W, Bay HH, George A, Ozkan M, Ozkan CS (2014) Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-Ion batteries. Sci Rep 4:406510Google Scholar
  10. 10.
    Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24(40):5452–5456CrossRefGoogle Scholar
  11. 11.
    Jang J, Yoon H (2004) Novel fabrication of size-tunable silica nanotubes using a reverse- microemulsion-mediated sol-gel method. Adv Mater 16(9–10):799–802CrossRefGoogle Scholar
  12. 12.
    Chen YJ, Xue XY, Wang TH (2005) Large-scale controlled synthesis of silica nanotubes using zinc oxide nanowires as templates. Nanotechnology 16(9):1978–1982CrossRefGoogle Scholar
  13. 13.
    Yin YD, Lu Y, Sun YG, Xia YN (2002) Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett 2(4):427–430CrossRefGoogle Scholar
  14. 14.
    Fan R, Wu YY, Li DY, Yue M, Majumdar A, Yang PD (2003) Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J Am Chem Soc 125(18):5254–5255CrossRefGoogle Scholar
  15. 15.
    Yu J, Bai X, Suh J, Lee SB, Son SJ (2009) Mechanical capping of silica nanotubes for encapsulation of molecules. J Am Chem Soc 131(43):15574–15575CrossRefGoogle Scholar
  16. 16.
    Gasparac R, Kohli P, Mota MO, Trofin L, Martin CR (2004) Template synthesis of nano test tubes. Nano Lett 4(3):513–516CrossRefGoogle Scholar
  17. 17.
    Zollfrank C, Scheel H, Greil P (2007) Regioselectively ordered silica nanotubes by molecular templating. Adv Mater 19(7):984–987CrossRefGoogle Scholar
  18. 18.
    Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1(11):601–603CrossRefGoogle Scholar
  19. 19.
    Mizrahi DM (2017) Facile one-step synthesis of silica micro- and nanotubes and their functionalization. Mater Today: Proceedings 4(7):7083–7092Google Scholar
  20. 20.
    Gao CB, Lu ZD, Yin YD (2011) Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods. Langmuir 27(19):12201–12208CrossRefGoogle Scholar
  21. 21.
    Chen HS, Sun ZY, Shao JC (2011) Investigation on FT-IR spectroscopy for eight different sources of SiO2. Bull Chin Ceramic Soc 30(4):934–937Google Scholar
  22. 22.
    Park JW, Chae EH, Kim SH, Lee JH, Kim JW, Yoon SM, Choi JY (2006) Preparation of fine Ni powders from nickel hydrazine complex. Mater Chem Phys 97(2–3):371–378CrossRefGoogle Scholar
  23. 23.
    Guo L, Liu CM, Wang RM, Xu HB, Wu ZY, Yang SH (2004) Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route. J Am Chem Soc 126(14):4530–4531CrossRefGoogle Scholar
  24. 24.
    Li ZQ, Xiong YJ, Xie Y (2003) Selected-control synthesis of ZnO nanowires and nanorods via a peg-assisted route. Inorg Chem 42(24):8105–8109CrossRefGoogle Scholar
  25. 25.
    Duan JX, Huang XT, Wang EK (2006) PEG-assisted synthesis of ZnO nanotubes. Mater Lett 60(15):1918–1921CrossRefGoogle Scholar
  26. 26.
    Dahlberg KA, Schwank JW (2012) Synthesis of Ni@SiO2 nanotube particles in a water-in-oil microemulsion template. Chem Mater 24(14):2635–2644CrossRefGoogle Scholar
  27. 27.
    Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen QW (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568CrossRefGoogle Scholar
  28. 28.
    Ren YR, Ding JN, Yuan NY, Jia SY, Qu MZ, Yu ZL (2012) Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries. J Solid State Electrochem 16(4):1453–1460CrossRefGoogle Scholar
  29. 29.
    Dai XY, Zhou AJ, Xu J, Yang B, Wang LP, Li JZ (2015) Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering. J Power Sources 298:114–122CrossRefGoogle Scholar
  30. 30.
    Dai XY, Zhou AJ, Xu J, Lu YT, Wang LP, Fan C, Li JZ (2016) Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. J Phys Chem C 120(1):422–430CrossRefGoogle Scholar
  31. 31.
    Zhou Y, Guo HJ, Yan GC, Wang ZX, Li XH, Yang ZW, Zheng AX, Wang JX (2018) Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chem Commun 54:3755–3758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Tang
    • 1
    • 2
  • Xinyi Dai
    • 1
    • 2
    Email author
  • Fuzhong Wu
    • 1
    • 2
    Email author
  • Yi Mai
    • 1
    • 2
  • Xiao Wang
    • 1
    • 2
  • Huixin Jin
    • 1
    • 2
  • Yijing Gu
    • 1
    • 2
  • Yanfang Xie
    • 1
    • 2
  1. 1.College of Material and MetallurgyGuizhou UniversityGuiyangChina
  2. 2.Guizhou Province Key Laboratory of Metallurgical Engineering and Process Energy SavingGuiyangChina

Personalised recommendations