Skip to main content
Log in

Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, we report the investigation on structural, electrical, dielectric properties, and ion dynamics of novel blend polymer electrolyte matrix (PEO-PEI) complexed with sodium hexafluorophosphate salt. All the solid polymer electrolyte films have been synthesized via solution cast method. The SPE films were characterized by the X-ray diffraction, field emission scanning electron microscope, impedance-dielectric spectroscopy, and thermogravimetric analysis. The morphology of the SPE alters with salt addition and confirms the blend polymer complex formation. The FTIR analysis evidenced the complex formation, and increase in the fraction of free ions is achieved. The ionic conductivity exhibits a maximum at the stoichiometric ratio O/Na = 10 and follows the Arrhenius behavior. The fraction of free ions is maximum for the SPE film with the highest ionic conductivity. The optimum electrolyte possesses a voltage stability window of about 4 V, excellent thermal stability up to 380 °C, and high ionic transference number (~ 1). The complex permittivity and conductivity have been simulated in whole frequency window to extract relaxation time and dielectric strength. The dielectric constant and relaxation time exhibited sequentially a maximum and minimum for the SPE film with the highest ionic conductivity. The loss tangent peak shifts toward high frequency with addition of salt, and it infers the faster ion dynamics in the polymer matrix. Then the ion transport parameters number density of charge carriers (n), ion mobility (μ), and diffusion coefficient (D) have been obtained by three methods (FTIR, impedance spectroscopy, and loss tangent method) and are in absolute correlation with the impedance results. An ion transport mechanism has been proposed based on experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics. 23:497–540

    CAS  Google Scholar 

  2. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou Z (2017) Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815

    CAS  PubMed  Google Scholar 

  3. Tarascon JM, Armand M (2008) Issues and challenges facing rechargeable lithium batteries. Nature. 451:652

    PubMed  Google Scholar 

  4. Saykar NG, Phatangare AB, Banerjee I, Bhoraskar VN, Ray AK, Mahapatra S (2019) Electron beam induced synthesis of Ru-rGO and its super capacitive behavior. 2D Mater 6:045030

    Google Scholar 

  5. Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 5:139–164

    Google Scholar 

  6. Hasa I, Hassoun J, Passerini S (2017) Nanostructured Na-ion and Li-ion anodes for battery application: a comparative overview. Nano Res 10:3942–3969

    CAS  Google Scholar 

  7. Yang Q, Zhang Z, Sun XG, Hu YS, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064

    CAS  PubMed  Google Scholar 

  8. Saykar NG, Pilania RK, Banerjee I, Mahapatra SK (2018) Synthesis of NiO-Co3O4 nanosheet and its temperature-dependent supercapacitive behavior. J Phys D Appl Phys 51:475501

    Google Scholar 

  9. Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg 2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23:997–1059

    CAS  Google Scholar 

  10. Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO) – poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262

    CAS  Google Scholar 

  11. Arya A, Saykar NG, Sharma AL (2019) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361

    Google Scholar 

  12. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002

    Google Scholar 

  13. Arya A, Sadiq M, Sharma AL (2019) Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym Bull 76:5149–5172

    CAS  Google Scholar 

  14. Arya A, Sharma S, Sharma AL, Kumar D, Sadiq M (2016) Structural and dielectric behavior of blend polymer electrolyte based on PEO–PAN? LiPF 6. Asian J Eng Appl Technol 5:4–7

    Google Scholar 

  15. Bhat C, Swaroop R, Arya A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5:418–434

    Google Scholar 

  16. Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN+ LiPF6 for energy storage. Appl Sci Lett 2:72–75

    Google Scholar 

  17. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Mater Lett 58:641–649

    CAS  Google Scholar 

  18. Qiao J, Fu J, Lin R, Ma J, Liu J (2010) Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer. 5:4850–4859

    Google Scholar 

  19. Janakiraman S, Padmaraj O, Ghosh S, Venimadhav A (2018) A porous poly (vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J Electroanal Chem 826:142–149

    CAS  Google Scholar 

  20. Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics. 24:2295–2319

    CAS  Google Scholar 

  21. Arya A, Sharma AL (2019) Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay‑based blend polymer nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-019-02893-x

  22. Harris CS, Shriver DF, Ratner MA (1986) Complex formation of poly(ethylenimine) with sodium triflate and conductivity behavior of the complexes. Macromolecules. 19:987–989

    CAS  Google Scholar 

  23. Paul JL, Jegat C, Lassegues JC (1992) Branched poly (ethyleneimine)-CF3SO3Li complexes. Electrochim Acta 37:1623–1625

    CAS  Google Scholar 

  24. Kaatze U, Göttmann O, Podbielski R, Pottel R (1988) Dielectric spectroscopy on aqueous solutions of some nitrogen-containing linear hydrocarbon polymers. J Mol Liq 37:127–141

    Google Scholar 

  25. Pehlivan IB, Granqvist CG, Marsal R, Georén P, Niklasson GA (2012) [PEI–SiO2]:[LiTFSI] nanocomposite polymer electrolytes: ion conduction and optical properties. Sol Energy Mater Sol Cells 98:465–471

    CAS  Google Scholar 

  26. Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29:17903–17920

    CAS  Google Scholar 

  27. Sumisha A, Arthanareeswaran G, Ismail AF, Kumar DP, Shankar MV (2015) Functionalized titanate nanotube-polyetherimide nanocomposite membrane for improved salt rejection under low pressure nanofiltration. RSC Adv 5:39464–39473

    CAS  Google Scholar 

  28. Hashmi SA, Upadhyaya HM, Thakur AK, Verma AL (2000) Experimental investigations on poly(ethylene oxide) based sodium ion conducting composite polymer electrolytes dispersed with SnO2. Ionics. 6:248–259

    CAS  Google Scholar 

  29. Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li + ion conducting plastic battery electrolyte. Ionics 19:1811–1823

    CAS  Google Scholar 

  30. Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer-clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci B Polym Phys 46:2577–2592

    CAS  Google Scholar 

  31. Girard GM, Wang X, Yunis R, MacFarlane DR, Bhattacharyya AJ, Forsyth M, Howlett PC (2019) Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly (ionic liquid) host. Batteries & Supercaps 2:229–239

    CAS  Google Scholar 

  32. Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504

    Google Scholar 

  33. Blonsky PM, Shriver DF, Austin P, Allcock PHR (1986) Complex formation and ionic conductivity of polyphosphazene solid electrolytes. Solid State Ionics 18:258–264

    Google Scholar 

  34. Pila CRM, Cappe EP, Mohallem NDS, Alves OL, Frutis MAA, Sánchez-Ramírez N et al (2019) Effect of the LLTO nanoparticles on the conducting properties of PEO-based solid electrolyte. Solid State Sci 88:41–47

    Google Scholar 

  35. Abdollahi S, Ehsani M, Morshedian J, Khonakdar HA, Reuter U (2018) Structural and electrochemical properties of PEO/PAN nanofibrous blends: prediction of graphene localization. Polym Compos 39:3626–3635

    CAS  Google Scholar 

  36. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745

    CAS  Google Scholar 

  37. Chen BK, Su CT, Tseng MC, Tsay SY (2006) Preparation of polyetherimide nanocomposites with improved thermal, mechanical and dielectric properties. Polym Bull 57:671–681

    CAS  Google Scholar 

  38. Burba CM, Frech R (2005) Spectroscopic measurements of ionic association in solutions of LiPF6. J Phys Chem B 109:15161–15164

    CAS  PubMed  Google Scholar 

  39. Karmakar A, Ghosh A (2014) Structure and ionic conductivity of ionic liquid embedded PEO-LiCF3SO3 polymer electrolyte. AIP Adv 4:087112

    Google Scholar 

  40. Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London

    Google Scholar 

  42. Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, ... Kang F (2019) Low resistance–integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv Funct Mater 29:1805301

    Google Scholar 

  43. Zhu Y, Cao J, Chen H, Yu Q, Li B (2019) High electrochemical stability of a 3D cross-linked network PEO@ nano-SiO2 composite polymer electrolyte for lithium metal batteries. J Mater Chem A 7:6832–6839

    CAS  Google Scholar 

  44. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222

    CAS  Google Scholar 

  45. Sharma AL, Thakur AK (2011) Polymer matrix-clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46:1916–1931

    CAS  Google Scholar 

  46. Naveen Kumar P, Sasikala U, Sharma AK (2013) Investigations on conductivity and discharge profiles of novel (PEO+PEMA) polymer blend electrolyte. Int J Inno Res Sci Eng Tech 2:3575–3582

    Google Scholar 

  47. Ramamohan K, Umadevi C, Achari VBS, Sharma AK (2013) Conductivity studies on (PVC/PEMA) solid polymer blend electrolyte films complexed with NaIO4. Int J Plast Technol 17:139–148

    CAS  Google Scholar 

  48. Kesavan K, Mathew CM, Rajendran S, Ulaganathan M (2014) Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 184:26–33

    CAS  Google Scholar 

  49. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    CAS  Google Scholar 

  50. Saikia D, Kumar A (2004) Ionic conduction in P(VDF-HFP)/PVDF-(PC + DEC)-LiClO4 polymer gel electrolytes. Electrochim Acta 60:119–123

    Google Scholar 

  51. Chiang CK, Davis GT, Harding CA, Takahashi T (1985) Polyethylenimine-sodium iodide complexes. Macromolecules 18:825–827

    CAS  Google Scholar 

  52. Takahashi T, Davis GT, Chiang CK, Harding CA (1986) Chemical modification of poly (ethylene imine) for polymeric electrolyte. Solid State Ionics 18:321–325

    Google Scholar 

  53. Koduru HK, Marino L, Scarpelli F, Petrov AG, Marinov YG, Hadjichristov GB et al (2017) Structural and dielectric properties of NaIO4–complexed PEO/PVP blended solid polymer electrolytes. Curr Appl Phys 17:1518–1531

    Google Scholar 

  54. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B Condens Matter 406:1706–1712

    Google Scholar 

  55. Harris CS, Ratner MA, Shriver DF (1987) Ionic conductivity in branched polyethylenimine-sodium trifluoromethanesulfonate complexes. Comparisons to analogous complexes made with linear polyethylenimine. Macromolecules 20:1778–1781

    CAS  Google Scholar 

  56. Latif F, Aziz M, Katun N, Yahya MZ (2006) The role and impact of rubber in poly (methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401–1404

    CAS  Google Scholar 

  57. Bloom H, Heymann E (1947) The electric conductivity and the activation energy of ionic migration of molten salts and their mixtures. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 188:392–414

    CAS  Google Scholar 

  58. Singh VK, Shalu SK, Chaurasia RK (2016) Singh, development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries. RSC Adv 6:40199–40210

    CAS  Google Scholar 

  59. Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y (2017) Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2:17035

    CAS  Google Scholar 

  60. Chen D, Cheng J, Wen Y, Cao G, Yang Y, Liu H (2012) Impedance study of electrochemical stability limits for electrolytes. Int J Electrochem Sci 7:12383–12390

    CAS  Google Scholar 

  61. Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics. 19:795–809

    CAS  Google Scholar 

  62. Koduru HK, Marinov YG, Hadjichristov GB, Petrov AG, Godbert N, Scaramuzza N (2018) Polyethylene oxide (PEO)–liquid crystal (E8) composite electrolyte membranes: microstructural, electrical conductivity and dielectric studies. J Non-Cryst Solids 499:107–116

    CAS  Google Scholar 

  63. Chaurasia SK, Chandra A (2017) Organic-inorganic hybrid electrolytes by in-situ dispersion of silica nanospheres in polymer matrix. Solid State Ionics 307:35–43

    CAS  Google Scholar 

  64. Halim SIA, Chan CH, Sim LH (2016) Thermal properties and intermolecular interaction of blends of poly (ethylene oxide) and poly (methyl acrylate). In Macromolecular Symposia 365:95–103

    CAS  Google Scholar 

  65. Elashmawi IS, Gaabour LH (2015) Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results in Physics 5:105–110

    Google Scholar 

  66. Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics. 17:135–143

    CAS  Google Scholar 

  67. Pawlicka A, Tavares FC, Dörr DS, Cholant CM, Ely F, Santos MJL, Avellaneda CO (2019) Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochim Acta 305:232–239

    CAS  Google Scholar 

  68. Ravi M, Pavani Y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448

    CAS  Google Scholar 

  69. Arya A, Sharma AL (2019) Tailoring the structural, morphological, electrochemical, and dielectric properties of solid polymer electrolyte. Ionics 25:1617–1632

    CAS  Google Scholar 

  70. Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP et al (2019) Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Materials 31:1807789

    Google Scholar 

  71. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    CAS  Google Scholar 

  72. Fragiadakis D, Dou S, Colby RH, Runt J (2009) Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). J Chem Phys 130:064907

    PubMed  Google Scholar 

  73. Teeters D The concentration behavior of lithium triflate at the surface of polymer electrolyte materials. Solid State Ionics 85(2003):239–245

    CAS  Google Scholar 

  74. Pritam, Arya A, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodiumion rechargeable batteries. J Mater Sci 54:7131–7155

    CAS  Google Scholar 

  75. Ngai KS, Ramesh S, Ramesh K, Juan JC (2018) Electrical, dielectric and electrochemical characterization of novel poly (acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate. Chem Phys Lett 692:19–27

    CAS  Google Scholar 

  76. Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Structural, dielectric and pyroelectric studies of Pb1-XCaXTiO3 thin films. Solid State Commun 127:299–304

    CAS  Google Scholar 

  77. Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21:1561–1575

    CAS  Google Scholar 

  78. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    CAS  PubMed  Google Scholar 

  79. Nakamura K, Saiwaki T, Fukao K (2010) Dielectric relaxation behavior of polymerized ionic liquid. Macromolecules. 43:6092–6098

    CAS  Google Scholar 

  80. Kisliuk A, Bocharova V, Popov I, Gainaru C, Sokolov AP (2019) Fundamental parameters governing ion conductivity in polymer electrolytes. Electrochim Acta 299:191–196

    CAS  Google Scholar 

  81. Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30:165402

    PubMed  Google Scholar 

  82. Kumar D, Kanchan DK (2019) Dielectric and electrochemical studies on carbonate free Na-ion conducting electrolytes for sodium-sulfur batteries. Journal of Energy Storage 22:44–49

    Google Scholar 

  83. Wei YZ, Sridhar S (1993) A new graphical representation for dielectric data. J Chem Phys 99:3119–3124

    CAS  Google Scholar 

  84. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659

    Google Scholar 

  85. Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 132

    Google Scholar 

  86. Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res27:334–345

  87. Khamzin AA, Popov II, Nigmatullin RR (2014) Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect. Phys Rev E Stat Nonlinear Soft Matter Phys 89:032303

    CAS  Google Scholar 

  88. Roy A, Dutta B, Bhattacharya S (2016) Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv 6:65434–65442

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Pritam) is thankful to CSIR, New Delhi, for the award of JRF fellowship. AA is thankful to the Central University of Punjab, Bathinda, for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pritam, Arya, A. & Sharma, A.L. Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 26, 745–766 (2020). https://doi.org/10.1007/s11581-019-03245-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03245-5

Keywords

Navigation