Skip to main content

Advertisement

Log in

Cyclic voltammetry for the determination of the selectivity of PANI-HClO4 sensor to different acids

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) conductive polymer is a unique energy storage electrode and sensor material. In this article, we report the use of electrochemistry as a quick and easy method to prepare PANI films, which are used as electrode materials to detect the selectivity to various acids. The sample was characterized and tested by XRD, scanning electron microscopy (SEM), BET, and cyclic voltammetry (CV). Various electrochemical parameters were measured and compared for various acids. As an electrode and sensor material, PANI film has different degrees of redox peaks for monobasic acid, dibasic acid, organic macromolecular acid, and inorganic acid. This type of sensor shows good repeatability and reproducibility, so this type of conductive polymer can be used as a sensor material to detect the minimum concentration of acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Deshmukh MA, Patil HK, Bodkhe GA, et al.(2017) EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu(II) ions. Sens Actuators B-Chem S0925400517324930

  2. Muralikrishna S, Nagaraju DH, Balakrishna RG et al (2017) Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions. Anal Chim Acta 990:S0003267017310516

    Article  Google Scholar 

  3. Huang J, Virji S, Weiller BH et al (2013) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315

    Article  Google Scholar 

  4. Yan J, Tong W, Fan Z et al (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195(9):3041–3045

    Article  CAS  Google Scholar 

  5. Jha PK, Singh SK, Gatla S, et al. (2015) Pb2+−N bonding chemistry: recycling of polyaniline-Pb nanocrystals waste for generating high-performance super-capacitor electrodes. J Phys Chem C 120(2acs.jpcc.5b11217.)

    Article  CAS  Google Scholar 

  6. Seenivasan R, Chang WJ, Gunasekaran S (2015) Highly sensitive detection and removal of Lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl Mater Inter 7(29):15935–15943

    Article  CAS  Google Scholar 

  7. (2015) Graphene/CeO2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II). J Electroanal Chem, 757:S1572665715301399

  8. Fan W, Miao Y’e, Liu T (2015) Graphene/γ-AlOOH hybrids as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of Pb(II). Chem Res Chin U 31(4):590–596

    Article  CAS  Google Scholar 

  9. Chaiyo S, Mehmeti E, Zagar K, et al. (2016) Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal Chim Acta S0003267016303439

  10. Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta 874:40–48

    Article  CAS  Google Scholar 

  11. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensor Actuat B-Chim 207:526–534

    Article  CAS  Google Scholar 

  12. Thoniyot P, Tan MJ, Karim AA, et al.(2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2)

    Article  Google Scholar 

  13. Guo H, He W, Lu Y, Zhang X (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carobn 92:133–141

    Article  CAS  Google Scholar 

  14. Chen J, Song J, Feng X (2016) Facile synthesis of graphene/polyaniline composite hydrogel for high-performance supercapacitor. Polym Bull 74(1):1–11

    Article  Google Scholar 

  15. D’Souza LP, Muralikrishna S, Chandan HR, Ramakrishnappa T, Balakrishna RG (2015) Neodymium doped titania as photoanode and graphene oxide–CuS composite as counter electrode material in quantum dot solar cell. J Mater Res 30(21):3241–3251

    Article  Google Scholar 

  16. Polsky R, Harper JC, Wheeler DR, Dirk SM, Arango DC, Brozik SM (2008) Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications. Biosens Bioelectron 23(6):757–764

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhang L, Kong Q, Ge S, Yan M, Yu J (2016) Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions. Anal Bioanal Chem 408(25):7181–7191

    Article  CAS  Google Scholar 

  18. Liu YL (2016) Effective approaches for the preparation of organo-modified multi-walled carbon nanotubes and the corresponding MWCNT/polymer nanocomposites. Polym J 48(4):351–358

    Article  CAS  Google Scholar 

  19. Vallejogiraldo C, Pugliese E, Larrañaga A, et al.(2016) Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine-UK 2547–2563

  20. Serena C, Elisa P, Andrea P et al (2015) Nanocomposites based on thermoplastic polymers and functional nanofiller for sensor applications. Materials 8(6):3377–3427

    Article  CAS  Google Scholar 

  21. Patil HK, Deshmukh MA, Gaikwad SD, Bodkhe GA, Asokan K, Yasuzawa M, Koinkar P, Shirsat MD (2017) Influence of oxygen ions irradiation on polyaniline/single walled carbon nanotubes nanocomposite. Radiat Phys Chem 130:47–51

    Article  CAS  Google Scholar 

  22. Datta K, Ghosh P, Rushi A, Mulchandani A, Shirsat M (2015) Fe nanoparticle tailored poly(N-methyl pyrrole) nanowire matrix: a CHEMFET study from the perspective of discrimination among electron donating analytes. J Phys D Appl Phys 48(19):195301–195308(8)

    Article  Google Scholar 

  23. Yang J, Li X, Liu C, Ma G (2015) Changes of structure and electrical conductivity of multi-walled carbon nanotubes film caused by 3 MeV proton irradiation. Appl Surf Sci 325:235–241

    Article  CAS  Google Scholar 

  24. Luo YL, Wei XP, Cao D, Bai RX, Xu F, Chen YS (2015) Polystyrene- block -poly(tert-butyl methacrylate)/multiwall carbon nanotube ternary conducting polymer nanocomposites based on compatibilizers: preparation, characterization and vapor sensing applications. Mater Design 87:149–156

    Article  CAS  Google Scholar 

  25. Moawed EA, El-Ghamry MA, El-Hagrasy MA et al (2016) Determination of iron, cobalt and nickel ions from aqueous media using the alkali modified miswak. J Aaubas 23(C):43–51

    Google Scholar 

  26. Kumar BN, Kanchi S, Sabela MI, et al.(2016) Spectrophotometric determination of nickel (II) in waters and soils: novel chelating agents and their biological applications supported by det method. Karbal Int J Modern Sci S2405609X16302433

  27. Chen N, Zhang Y, Liu H, Ruan H, Dong C, Shen Z, Wu A (2016) A supersensitive probe for rapid colorimetric detection of nickel ion based on a sensing mechanism of anti-etching. ACS Sustain Chem Eng 4(12):6509–6516

    Article  CAS  Google Scholar 

  28. Wu T, Ma Z (2017) Colorimetric detection of cobalt or nickel ions based on the change of the catalytic performance of leached Ag nanoparticles. J Nanosci Nanotechnol 17(6):4297–4303

    Article  CAS  Google Scholar 

  29. Pokpas K, Jahed N, Baker PG, Iwuoha EI (2017) Complexation-based detection of nickel(II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry. Sensors-Basel 17(8):1711

    Article  Google Scholar 

  30. Park S, Kwon O, Lee J, Jang J, Yoon H (2014) Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors-Basel 14(2):3604–3630

    Article  CAS  Google Scholar 

  31. Ibrahim I, Lim HN, Abou-Zied OK, Huang NM, Estrela P, Pandikumar A (2016) Cadmium sulfide nanoparticles decorated with Au quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(II) ions. J Phys Chem C 120(39):22202–22214

    Article  CAS  Google Scholar 

  32. Behroozi M, Vahedpour M, Manaheji M et al (2019) Separation of formic acid from aqueous solutions by liquid extraction technique at different temperatures. Phys Chem Res 7(1):201–215

    CAS  Google Scholar 

  33. Lapka JL, Wahu et al (2019) Ternary complex formation and extraction modeling in malonate-buffered trivalent actinide-lanthanide separations. Inorg Chem 58(11):7554–7563

    Article  CAS  Google Scholar 

  34. Yupin C, Lizhen Y, Huang et al (2016) Selenium speciation in radix puerariae using ultrasonic assisted extraction combined with reversed phase high-performance liquid chromatography-inductively coupled plasma-mass spectrometry after magnetic solid-phase extraction with 5-sulfosalicylic acid functionalized magnetic nanoparticles. Spectrochim Acta B At Spectrosc 122:172–177

    Article  Google Scholar 

  35. Bayraktepe DE, Yazan et al (2019) Sensitive and cost effective disposable composite electrode based on graphite, nano-smectite and multiwall carbon nanotubes for the simultaneous trace level detection of ascorbic acid and acetylsalicylic acid in pharmaceuticals. Talanta 203:131–139

    Article  CAS  Google Scholar 

  36. Russo R, Valletta et al (2019) Reliable identification of lactic acid bacteria by targeted and untargeted high-resolution tandem mass spectrometry. Food Chem 285:111–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Li Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JJ., Zhang, N., Liu, DL. et al. Cyclic voltammetry for the determination of the selectivity of PANI-HClO4 sensor to different acids. Ionics 26, 1029–1038 (2020). https://doi.org/10.1007/s11581-019-03238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03238-4

Keywords

Navigation