Advertisement

Ionics

, Volume 25, Issue 11, pp 5611–5616 | Cite as

An efficient electrocatalyst of NiO supported on carbon paper for nonaqueous Li–O2 batteries

  • Juhyoung Kim
  • Jungwon KangEmail author
Short Communication
  • 50 Downloads

Abstract

A Li–O2 battery has been considered as one of the most promising energy storage systems owing to their ultrahigh theoretical energy densities. However, low energy efficiency (high polarization) during discharge/charge and resulting cycle stabilities have severely limited the development of this type of battery. Here, we demonstrate a simple preparation of NiO supported on carbon paper by dipping carbon paper in Ni acetate solution and heating it to apply NiO directly to the carbon as a cathode material for nonaqueous Li–O2 batteries. The prepared sample was confirmed as the structure of NiO-incorporated carbon using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and high-resolution transmission electron microscopy (HR-TEM) analysis despite amorphous patterns seen in XRD (~ 10% NiO in NiO supported on carbon paper). A Li–O2 cell in which the NiO supported on carbon paper was applied as an electrocatalyst showing an initial ~ 6% increase in energy efficiency and a subsequent 50 cycle retention.

Keywords

Li–O2 battery Cathode catalysts Energy efficiency 

Notes

Funding information

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A04013238).

Supplementary material

11581_2019_3232_MOESM1_ESM.docx (512 kb)
ESM 1 (DOCX 512 kb)

References

  1. 1.
    Lu Y-C, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Horn YS (2013) Energy Environ Sci 6:750–768CrossRefGoogle Scholar
  2. 2.
    Li F, Zhang T, Zhou H (2013) Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci 6:1125–1141CrossRefGoogle Scholar
  3. 3.
    A. C. Luntz, B. D. McCloskey (2014) Chem Rev 114 (23) 11721–11750Google Scholar
  4. 4.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium−air battery: promise and challenges. J Phys Chem Lett 1:2193–2203CrossRefGoogle Scholar
  5. 5.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  6. 6.
    Hardwick LJ, Bruce PG (2012) The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Curr Opin Solid St M 16:178–185CrossRefGoogle Scholar
  7. 7.
    Thotiyl MMO, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135:494–500CrossRefGoogle Scholar
  8. 8.
    Wang LJ, Zhang J, Zhao X, Xu LL, Lyu ZY, Laia M, Chen W (2015) Palladium nanoparticle functionalized graphene nanosheets for Li–O2 batteries: enhanced performance by tailoring the morphology of the discharge product. RSC Adv 5:73451–73456CrossRefGoogle Scholar
  9. 9.
    F. Wu, Y. Xing, X. Zeng, Y. Yuan, X. Zhang, R. S.-Yassar, J. Wen, D. J. Miller, L. Li, R. Chen, J. Lu, K. Amine (2016) Adv. Funct. Mater. 26 7626–7633CrossRefGoogle Scholar
  10. 10.
    Liao K, Zhang T, Wang Y, Li F, Jian Z, Yu H, Zhou H (2015) Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. ChemSusChem 8:1429–1434CrossRefGoogle Scholar
  11. 11.
    Xu C, Gallant BM, Wunderlich PU, Lohmann T, Greer JR (2015) Three-dimensional Au microlattices as positive electrodes for Li–O2 batteries. ACS Nano 9(6):5876–5883CrossRefGoogle Scholar
  12. 12.
    J. Zhang, Y. Luan, Z. Lyu, L. Wang, L. Xu, K. Yuan, F. Pan, M. Lai, Zhaolin Liu, W. Chen (2015) Nanoscale 7 14881–14888CrossRefGoogle Scholar
  13. 13.
    Yang H-K, Chin C-C, Chen J-S (2016) The Use of Spray-Dried Mn3O4/C Composites as Electrocatalysts for Li–O2 Batteries. Nanomaterials 6:203–215CrossRefGoogle Scholar
  14. 14.
    Zhao G, Xu Z, Sun K, Mater J (2013) Chem A 1:12862–12867Google Scholar
  15. 15.
    Tong S, Zheng M, Lu Y, Lin Z, Li J, Zhang X, Shi Y, He P, Zhou H (2015) Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O2 batteries. J Mater Chem A 3(31):16177–16182CrossRefGoogle Scholar
  16. 16.
    Hong M, Choi HC, Byon HR (2015) Nanoporous NiO Plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li–O2 battery. Chem Mater 27:2234–2241CrossRefGoogle Scholar
  17. 17.
    Kim J, Kang I, Kim S, Kang J (2018) Facile synthesis of partially oxidized Mn3O4-functionalized carbon cathodes for rechargeable Li–O2 batteries. RSC Adv 8:22226–22232CrossRefGoogle Scholar
  18. 18.
    Soriano L, Abbate M, Fernandez A, Gonzalez-Elipe AR, Sirotti F, Rossi G, Sanz JM (1997) Thermal annealing of defects in highly defective NiO nanoparticles studied by X-ray and electron spectroscopies. Chem Phys Lett 266:184–188CrossRefGoogle Scholar
  19. 19.
    Soriano L, Gutierrez A, Preda I, Palacin S, Sanz JM, Abbate M, Trigo JF, Vollmer A, Bressler PR (2006) Splitting of Ni 3d states at the surface of NiO nanostructures. Phys Rev B 74:193402CrossRefGoogle Scholar
  20. 20.
    D’Addato S, Grillo V, Altieri S, Frabboni S, Rossi F, Valeri SJ (2011) Structure and stability of nickel/nickel oxide core–shell nanoparticles. Phys Condens Matter 23:175003CrossRefGoogle Scholar
  21. 21.
    Oku M, Tokuda H, Hirokawa K, Electron Spectrosc J (1991) Final states after Ni2p photoemission in the nickel—oxygen system. Relat Phenom 53:201–211CrossRefGoogle Scholar
  22. 22.
    Uhlenbrock S, Scharfschwerdt C, Neumann M, Illing G, Freund HJ (1992) The influence of defects on the Ni 2p and O 1s XPS of NiO. J Phys Condens Matter 4:7973–7978CrossRefGoogle Scholar
  23. 23.
    Kim KS, Winograd N (1972) Surf Sci 43:625–643CrossRefGoogle Scholar
  24. 24.
    Oku M, Hiromwa K, Electron Spectrosc J (1977) The effect of the next nearest neighbor ion on the X-ray photoelectron spectra of 2p levels for Co2+, Ni2+ and Cu2+ in MgO. Relat Phenom 10:103–110CrossRefGoogle Scholar
  25. 25.
    Tyuliev G, Sokolova M (1991) Temperature dependence of Ni3+ quantity in the surface layer of NiO. Appl Surf Sci 52:343–349CrossRefGoogle Scholar
  26. 26.
    Matthea AP, Marjorie AL (2012) Chem Mater 24:4483–4490CrossRefGoogle Scholar
  27. 27.
    Agegnehu AK, Pan C-J, Rick J, Lee J-F, Su W-N, Hwang B-J (2012) Enhanced hydrogen generation by cocatalytic Ni and NiO nanoparticles loaded on graphene oxide sheets. J Mater Chem 22:13849–13854CrossRefGoogle Scholar
  28. 28.
    Wang H, Guo W, Jiang Z, Yang R, Jiang Z, Pan Y, Shangguan W (2018) J Catal 361:370–383CrossRefGoogle Scholar
  29. 29.
    A. K. Agegnehu, C.-J. Pan, J. Rick, J. -F. Lee, W.-N. Sub, B.-J. Hwang (2012) J. Mater. Chem. 22 13849–13854CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials Science and EngineeringMokpo National UniversityMuan-gunSouth Korea

Personalised recommendations