pp 1–11 | Cite as

Surface modification by fluorine doping to increase discharge capacity of Li1.2Ni0.2Mn0.6O2 cathode materials

  • Yun-shan Jiang
  • Gang Sun
  • Fu-da Yu
  • Lan-fang Que
  • Liang Deng
  • Xiang-hui Meng
  • Zhen-bo WangEmail author
Original Paper


Anion doping is considered as an effective method to tap the potential of Li-rich materials to obtain more discharge capacity. Here, we prepare fluorine-doped Li1.2Ni0.2Mn0.6O2 materials by a low-temperature secondary sintering. Rietveld refinements of XRD show an increase in lattice parameters and indicate a wider Li+ diffusion channel after fluorine doping. From TEM and HRTEM images, it is observed that the fluorine-doped sample displays a more pronounced layered appearance, and partial lattice fringes are slightly curved which may be caused by the substitution of F for O to break the symmetry of MnO6 octahedron. The fitting results of XPS show that Mn is partially oxidized and the local electronic environment of O changes. The best one shows a discharge capacity of 288 mAh/g at 0.1 C with a Coulombic efficiency of 95.9% in the first lap. And it performs a capacity retention of 91.0% after 100 cycles at 0.2 C.


Li-rich cathode Fluorine doping High discharge capacity Surface local structure Li-ion batteries 



We are supported in part by the National Natural Science Foundation of China (grant no. 21273058, 21673064, and 51802059), China Postdoctoral Science Foundation (grant no. 2017M621285 and 2018T110292), and Harbin Technological Achievements Transformation Projects (2016DB4AG023), and acknowledge their financial support.


  1. 1.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302CrossRefGoogle Scholar
  2. 2.
    Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule. 1(2):229–243CrossRefGoogle Scholar
  3. 3.
    Turcheniuk K, Bondarev D, Singhal V, Yushin G (2018) Ten years left to redesign lithium-ion batteries. Nature. 559:467–470CrossRefGoogle Scholar
  4. 4.
    Liao K, Chen S, Wei H, Fan J, Xu Q, Min Y (2018) Micropores of pure nanographite spheres for long cycle life and high-rate lithium-sulfur batteries. J Mater Chem A 6(45):23062–23070CrossRefGoogle Scholar
  5. 5.
    Sun G, Yin X, Yang W, Zhang J, du Q, Ma Z, Shao G, Wang ZB (2018) Synergistic effects of ion doping and surface-modifying for lithium transition-metal oxide: synthesis and characterization of La2O3-modified LiNi1/3Co1/3Mn1/3O2. Electrochim Acta 272:11–21CrossRefGoogle Scholar
  6. 6.
    Sun G, Jia C, Zhang J, Hou L, Ma Z, Shao G, Wang ZB (2019) Core-shell structure LiNi1/3Mn1/3Co1/3O2@ ultrathin δ-MnO2 nanoflakes cathode material with high electrochemical performance for lithium-ion batteries. Ionics, 1–10.Google Scholar
  7. 7.
    Han X, Gui X, Yi T et al (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin Solid State Mater Sci 22(4):109–126CrossRefGoogle Scholar
  8. 8.
    Li X, Liu J, Banis MN, Lushington A, Li R, Cai M, Sun X (2014) Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci 7(2):768–778CrossRefGoogle Scholar
  9. 9.
    Shi J, Xiao D, Ge M et al (2018) High-capacity cathode material with high voltage for Li-ion batteries. Adv Mater 30(9):1705575CrossRefGoogle Scholar
  10. 10.
    Lee J, Kitchaev DA, Kwon D et al (2018) Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature. 556(7700):185–190CrossRefGoogle Scholar
  11. 11.
    Yabuuchi N, Yoshii K, Myung S et al (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133(12):4404–4419CrossRefGoogle Scholar
  12. 12.
    Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation — approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854CrossRefGoogle Scholar
  13. 13.
    Yu H, Kim H, Wang Y et al (2012) High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys 14(18):6584–6595CrossRefGoogle Scholar
  14. 14.
    Yu H, Zhou H (2012) Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese. J Mater Chem 22(31):15507CrossRefGoogle Scholar
  15. 15.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15(23):2257CrossRefGoogle Scholar
  16. 16.
    Arunkumar TA, Wu Y, Manthiram A (2007) Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2−Li[M]O2 (M = Mn0.5-yNi0.5-yCo2yand Ni1-yCoy) solid solutions. Chem Mater 19(12):3067–3073CrossRefGoogle Scholar
  17. 17.
    Rozier P, Tarascon JM (2015) Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc 162(14):A2490–A2499CrossRefGoogle Scholar
  18. 18.
    Lee J, Urban A, Li X (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 343:519–522CrossRefGoogle Scholar
  19. 19.
    Luo D, Li G (2013) Novel synthesis of Li1.2Mn0.4Co0.4O2 with an excellent electrochemical performance from 10.4°C to 45.4°C. J Mater Chem A 1:1220–1227CrossRefGoogle Scholar
  20. 20.
    Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J Phys Chem Lett 4(8):1268–1280CrossRefGoogle Scholar
  21. 21.
    Shi SJ, Tu JP, Tang YY, Zhang YQ, Wang XL, Gu CD (2013) Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template. J Power Sources 240:140–148CrossRefGoogle Scholar
  22. 22.
    Zhou L, Wu H, Tian M (2016) Enhanced cycling stability and rate capability of Bi2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries. RSC. Adv 6:69790CrossRefGoogle Scholar
  23. 23.
    Qing R, Shi J, Xiao D et al (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6(6):1501914CrossRefGoogle Scholar
  24. 24.
    Wu Y, Ma C, Yang J, Li Z, Allard LF, Liang C, Chi M (2015) Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. J Mater Chem A 3(10):5385–5391CrossRefGoogle Scholar
  25. 25.
    Kim JS, Johnson CS, Vaughey JT, Thackeray MM (2006) Pre-conditioned layered electrodes for lithium batteries. J Power Sources 153(2):258–264CrossRefGoogle Scholar
  26. 26.
    Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226CrossRefGoogle Scholar
  27. 27.
    Mohanty D, Kalnaus S, Meisner RA et al (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248CrossRefGoogle Scholar
  28. 28.
    Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7). Chem Mater 20(19):6095–6106CrossRefGoogle Scholar
  29. 29.
    Li Q, Li G, Fu C et al (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6(13):10330–10341CrossRefGoogle Scholar
  30. 30.
    Wang D, Huang Y, Huo Z et al (2013) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim Acta 107:461–466CrossRefGoogle Scholar
  31. 31.
    Zhao J, Wang Z, Guo H et al (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401CrossRefGoogle Scholar
  32. 32.
    Song B, Zhou C, Wang H, Liu H, Liu Z, Lai MO, Lu L (2014) Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries. J Electrochem Soc 161(10):A1723–A1730CrossRefGoogle Scholar
  33. 33.
    Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120CrossRefGoogle Scholar
  34. 34.
    Wang M, Yu F, Sun G et al (2019) Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphor doping strategy for high-energy Li-ion batteries. J Mater Chem A 7(14):8302–8314CrossRefGoogle Scholar
  35. 35.
    Wang Y, Gu H, Song J et al (2018) Suppressing Mn reduction of Li-rich Mn-based cathodes by Fdoping for advanced lithium-ion batteries. J Phys Chem C 122(49):27836–27842CrossRefGoogle Scholar
  36. 36.
    Binder JO, Culver SP, Pinedo R, Weber DA, Friedrich MS, Gries KI, Volz K, Zeier WG, Janek J (2018) Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 10(51):44452–44462CrossRefGoogle Scholar
  37. 37.
    Lun Z, Ouyang B, Kitchaev DA, Clément RJ, Papp JK, Balasubramanian M, Tian Y, Lei T, Shi T, McCloskey BD, Lee J, Ceder G (2019) Improved cycling performance of Li-excess cation-disordered cathode materials upon fluorine substitution. Adv Energy Mater 9(2):1802959CrossRefGoogle Scholar
  38. 38.
    Yi T, Li Y, Yang S et al (2016) Improved cycling stability and fast charge–discharge performance of cobalt-free Lithium-rich oxides by magnesium-doping. ACS Appl Mater Interfaces 8(47):32349–32359CrossRefGoogle Scholar
  39. 39.
    Yi T, Zhu Y, Tao W et al (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar
  40. 40.
    Li X, Liu J, Meng X, Tang Y, Banis MN, Yang J, Hu Y, Li R, Cai M, Sun X (2014) Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J Power Sources 247:57–69CrossRefGoogle Scholar
  41. 41.
    Yu F, Que L, Wang Z et al (2016) Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A 4(47):18416–18425CrossRefGoogle Scholar
  42. 42.
    Rougier A, Gravereau P, Delmas C (1996) Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies. J Electrochem Soc 143:1168–1175CrossRefGoogle Scholar
  43. 43.
    Li L, Song BH, Chang YL et al (2015) Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources 283:162–170CrossRefGoogle Scholar
  44. 44.
    Yin SC, Rho YH, Swainson I, Nazar LF (2006) X-ray/neutron diffraction and electrochemical studies of lithium de/re-intercalation in Li1-xCo1/3Ni1/3Mn1/3O2(x=0→1). Chem Mater 18(7):1901–1910CrossRefGoogle Scholar
  45. 45.
    Thackeray MM, Kang S, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125CrossRefGoogle Scholar
  46. 46.
    Song B, Liu H, Liu Z (2013) High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci Rep 3:3094CrossRefGoogle Scholar
  47. 47.
    Erickson EM, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, Grinblat J, Talianker M, Shin JY, Lampert JK, Markovsky B, Frenkel AI, Aurbach D (2017) High-temperature treatment of Li-rich cathode materials with ammonia: improved capacity and mean voltage stability during cycling. Adv Energy Mater 7(18):1700708CrossRefGoogle Scholar
  48. 48.
    Reed J, Ceder G (2004) Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev 104(10):4513–4534CrossRefGoogle Scholar
  49. 49.
    Kuppan S, Shukla AK, Membreno D, Nordlund D, Chen G (2017) Revealing anisotropic spinel formation on pristine Li- and Mn-rich layered oxide surface and its impact on cathode performance. Adv Energy Mater 7(11):1602010CrossRefGoogle Scholar
  50. 50.
    Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14(6):3550–3555CrossRefGoogle Scholar
  51. 51.
    Yu X, Lyu Y, Gu L et al (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 4(5):1300950CrossRefGoogle Scholar
  52. 52.
    Armstrong AR, Holzapfel M, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRefGoogle Scholar
  53. 53.
    Shaju KM, Rao GVS, Chowdari BVR (2003) EIS and GITT studies on oxide cathodes, O2-Li(2/3)·x(Co0.15Mn0.85)O2 (x=0 and 1/3). Electrochim Acta 48:2691–2703CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yun-shan Jiang
    • 1
  • Gang Sun
    • 1
  • Fu-da Yu
    • 1
  • Lan-fang Que
    • 1
  • Liang Deng
    • 1
  • Xiang-hui Meng
    • 2
  • Zhen-bo Wang
    • 1
    Email author
  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Shandong ALLGRAND New Energy Technology Co., Ltd.DezhouChina

Personalised recommendations