Advertisement

Ionics

pp 1–10 | Cite as

Effects of Na2CO3/ZnO co-addition on the sinterability and electrical conductivity of BaZr0.1Ce0.7Y0.1Sc0.1O3-δ ceramic

  • X. Y. Luo
  • B. MengEmail author
  • Z. D. Xia
  • Q. B. Chen
  • D. Z. Dong
  • M. Y. Zhao
Original Paper
  • 15 Downloads

Abstract

In order to investigate the effects of Na2CO3/ZnO co-addition on the sinterability and electrical conductivity of BaZr0.1Ce0.7Y0.1Sc0.1O3-δ (BZCYSc) ceramic, Na2CO3 and ZnO were added and BZCYSc/ZnO/Na2CO3 ceramic was prepared by mechanical ball milling and high-temperature sintering in air. The crystalline structure, micro-morphology, chemical composition, density, and electrical conductivity of the sintered ceramics were characterized by XRD, SEM, EDS, Archimedes method, and electrochemical impedance spectrum, respectively. The grains size of BZCYSc-2%ZnO-5%Na2CO3 is about 2.5~5 μm. Na2CO3/ZnO co-addition is beneficial to improve the sinterability and electrical conductivity of BZCYSc. The sintering temperature of BZCYSc can be lowered from 1550 to 1350 °C when 2 mol%ZnO is added. At 550 °C, the electrical conductivities of BZCYSc-2%ZnO-10%Na2CO3 and BZCYSc are 1.90 × 10−3 S/cm and 1.81 × 10−3 S/cm. The activation energies of BZCYSc and BZCYSc-2%ZnO-10%Na2CO3 are 0.7529 eV and 0.5641 eV, respectively.

Keywords

BaZr0.1Ce0.7Y0.1Sc0.1O3-δ ceramic Proton conductor Sinterability Electrical conductivity 

Notes

Funding information

This work was financially supported by the Yunan Ten Thousand Talents Plan Young & Elite Talents Project and the National Natural Science Foundation of China (51462018).

References

  1. 1.
    Fabbri E, Bi L, Pergolesi D, Traversa E (2012) Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv Mater 24(2):195–208CrossRefGoogle Scholar
  2. 2.
    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega JC, Grey CP, Haile SM (2013) Proton trapping in yttrium-doped barium zirconate. Nat Mater 12(7):647–651CrossRefGoogle Scholar
  3. 3.
    Liu T, Zhang X, Wang X, Yu J, Li L (2016) A review of zirconia-based solid electrolytes. Ionics 22(12):2249–2262CrossRefGoogle Scholar
  4. 4.
    Babilo P, Uda T, Haile SM (2007) Processing of yttrium-doped barium zirconate for high proton conductivity. J Mater Res 22(5):1322–1330CrossRefGoogle Scholar
  5. 5.
    Magrez A, Schober T (2005) Thermal degradation of proton conductors BayM1-xYxO3-δ (M=Zr, Ce)(M=Zr, Ce). Ionics 11(3–4):171–176CrossRefGoogle Scholar
  6. 6.
    Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK, Tsiakaras P (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79CrossRefGoogle Scholar
  7. 7.
    Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39(11):4355–4369CrossRefGoogle Scholar
  8. 8.
    Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J (2015) A review of advanced proton-conducting materials for hydrogen separation. Prog Mater Sci 74:1–50CrossRefGoogle Scholar
  9. 9.
    Kochetova N, Animitsa I, Medvedev D, Demin A, Tsiakaras P (2016) Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv 6(77):73222–73268CrossRefGoogle Scholar
  10. 10.
    Fabbri E, D’Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba (Ce0.8-xZrx)Y0.2O3-δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179(15–16):558–564CrossRefGoogle Scholar
  11. 11.
    Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138(1–2):91–98CrossRefGoogle Scholar
  12. 12.
    Snijkers FM, Buekenhoudt A, Cooymans J, Luyten JJ (2004) Proton conductivity and phase composition in BaZr0.9Y0.1O3-δ. Scr Mater 50(5):655–659CrossRefGoogle Scholar
  13. 13.
    Tao SW, Irvine JT (2006) A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv Mater 18(12):1581–1584CrossRefGoogle Scholar
  14. 14.
    Tao Z, Zhu Z, Wang H, Liu W (2010) A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. J Power Sources 195(11):3481–3484CrossRefGoogle Scholar
  15. 15.
    Reddy GS, Bauri R (2018) A novel route to enhance the sinterability and its effect on microstructure, conductivity and chemical stability of BaCe0.4Zr0.4Y0.2O3-δ proton conductors. Mater Chem Phys 216:250–259CrossRefGoogle Scholar
  16. 16.
    Zhong Z (2007) Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ionics 178(3–4):213–220CrossRefGoogle Scholar
  17. 17.
    Guo Y, Ran R, Shao Z, Liu S (2011) Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3-δ (0≤x≤0.20) proton conductors. Int J Hydrog Energy 36(14):8450–8460CrossRefGoogle Scholar
  18. 18.
    Zhang C, Zhao H, Xu N, Li X, Chen N (2009) Influence of ZnO addition on the properties of high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3−δ synthesized via citrate–nitrate method. Int J Hydrog Energy 34(6):2739–2746CrossRefGoogle Scholar
  19. 19.
    Yoo CY, Yun DS, Joo JH, Yu JH (2015) The effects of NiO addition on the structure and transport properties of proton conducting BaZr0.8Y0.2O3−δ. J Alloys Compd 621:263–267CrossRefGoogle Scholar
  20. 20.
    Liou YC, Yang SL (2008) A simple and effective process for Sr0.995Ce0.95Y0.05O3−δ and BaCe0.9Nd0.1O3-δ solid electrolyte ceramics. J Power Sources 179(2):553–559CrossRefGoogle Scholar
  21. 21.
    Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P (2008) Influence of Cu on the properties of gadolinium-doped barium cerate. J Power Sources 181(2):292–296CrossRefGoogle Scholar
  22. 22.
    Yang SJ, Zhang SP, Sun C, Ye XF, Wen ZY (2018) Lattice incorporation of Cu2+ into the BaCe0.7Zr0.1Y0.1Yb0.1O3-δ electrolyte on boosting its sintering and proton-conducting abilities for reversible solid oxide cells. ACS Appl Mater Interfaces 10(49):42387–42396CrossRefGoogle Scholar
  23. 23.
    Wang B, Bi L, Zhao XS (2018) Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3-δ electrolyte for proton-conducting solid oxide fuel cells. J Power Sources 399:207–214CrossRefGoogle Scholar
  24. 24.
    Tao S, Irvine JT (2007) Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C. J Solid State Chem 180(12):3493–3503CrossRefGoogle Scholar
  25. 25.
    Azad AK, Irvine JT (2008) High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3-δ. Solid State Ionics 179(19–20):678–682CrossRefGoogle Scholar
  26. 26.
    Somekawa T, Matsuzaki Y, Sugahara M, Tachikawa Y, Matsumoto H, Taniguchi S, Sasaki K (2017) Physicochemical properties of Ba(Zr,Ce)O3-δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance. Int J Hydrog Energy 42(26):16722–16730CrossRefGoogle Scholar
  27. 27.
    Nguyen NTQ, Yoon HH (2013) Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells. J Power Sources 231:213–218CrossRefGoogle Scholar
  28. 28.
    Peng Z, Guo R, Yin Z, Li J (2009) BaZr0.9Y0.1O2.95/Na2SO4 composite with enhanced protonic conductivity. J Wuhan Univ Technol-Mater Sci Ed 24(2):269–272CrossRefGoogle Scholar
  29. 29.
    Ma G, Wen Z, Han J, Zhang J, Wen Y (2015) Enhanced proton conduction of BaZr0.9Y0.1O3-δ by hybrid doping of ZnO and Na3PO4. Solid State Ionics 281:6–11CrossRefGoogle Scholar
  30. 30.
    Guo R, Deng Y, Gao Y, Zhang L (2011) Fabrication and properties of Ba (Zr1-xCex)0.9Y0.1O2.95/NaCl composite electrolyte materials. J Alloys Compd 509(36):8894–8900CrossRefGoogle Scholar
  31. 31.
    Guo X, Ding Y (2004) Grain boundary space charge effect in zirconia experimental evidence. J Electrochem Soc 151(1):J1–J7CrossRefGoogle Scholar
  32. 32.
    Ma Y, Wang X, Raza R, Muhammed M, Zhu B (2010) Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Int J Hydrog Energy 35(7):2580–2585CrossRefGoogle Scholar
  33. 33.
    Li Y, Guo R, Wang C, Liu Y, Shao Z, An J, Liu C (2013) Stable and easily sintered BaCe0.5Zr0.3Y0.2O3-δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells. Electrochim Acta 95:95–101CrossRefGoogle Scholar
  34. 34.
    Wang H, Peng R, Wu X, Hu J, Xia C (2009) Sintering behavior and conductivity study of yttrium-doped BaCeO3-BaZrO3 solid solutions using ZnO additives. J Am Ceram Soc 92(11):2623–2629CrossRefGoogle Scholar
  35. 35.
    Babilo P, Haile SM (2005) Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J Am Ceram Soc 88(9):2362–2368CrossRefGoogle Scholar
  36. 36.
    Li YH, Yang WJ, Wang L, Zhu J, Meng W, He ZX, Dai L (2018) Improvement of sinterability of BaZr0.8Y0.2O3-δ for H2 separation using Li2O/ZnO dual-sintering aid. Ceram Int 44(13):15935–15943CrossRefGoogle Scholar
  37. 37.
    Khan MN, Azad AK, Savaniu CD, Hing P, Irvine JTS (2017) Robust doped BaCeO3-δ electrolyte for IT-SOFCs. Ionics 23(9):2387–2396CrossRefGoogle Scholar
  38. 38.
    Hossain S, Abdalla AM, Zaini JH, Savaniu CD, Irvine JT, Azad AK (2017) Highly dense and novel proton conducting materials for SOFC electrolyte. Int J Hydrog Energy 42(44):27308–27322CrossRefGoogle Scholar
  39. 39.
    Montaleone D, Mercadelli E, Gondolini A, Ardit M, Pinasco P, Sanson A (2019) Role of the sintering atmosphere in the densification and phase composition of asymmetric BCZY-GDC composite membrane. J Eur Ceram Soc 39(1):21–29CrossRefGoogle Scholar
  40. 40.
    Luo XY, Meng B, Zhao MY, Xie H, Bian LF, Yang X (2019) Preparation and electrical conductivity of BaZr0.8Y0.2O3-δ/(ZrO2)0.92(Y2O3)0.08 proton/oxygen ion conducting composite ceramic. Ionics 25(3):1157–1116CrossRefGoogle Scholar
  41. 41.
    Haile SM, West DL, Campbell J (1998) The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. J Mater Res 13(6):1576–1595CrossRefGoogle Scholar
  42. 42.
    Irvine JT, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRefGoogle Scholar
  43. 43.
    Potter AR, Baker RT (2006) Impedance studies on Pt|SrCe0.95Yb0.05O3|Pt under dried and humidified air, argon and hydrogen. Solid State Ionics 177(19–25):1917–1924CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • X. Y. Luo
    • 1
  • B. Meng
    • 1
    Email author
  • Z. D. Xia
    • 1
  • Q. B. Chen
    • 1
  • D. Z. Dong
    • 1
  • M. Y. Zhao
    • 1
  1. 1.Faculty of Materials Science & EngineeringKunming University of Science & TechnologyKunmingPeople’s Republic of China

Personalised recommendations