Advertisement

Ionics

, Volume 25, Issue 10, pp 5083–5089 | Cite as

Effect of La-doped scheelite-type SrWO4 for photocatalytic H2 production

  • Jia YangEmail author
  • Xiaorui SunEmail author
  • Chunmei Zeng
  • Qihuang Deng
  • Yilan Hu
  • Ting Zeng
  • Jianwei Shi
Short Communication
  • 65 Downloads

Abstract

In this paper, we present a systematic investigation of the photocatalytic H2 production over the Sr1−1.5xLaxWO4 (0 ≤ x ≤ 0.2) solid solutions. The doped La3+ ion in the crystal structure was identified by the Le Bail fit on the X-ray diffraction pattern of the as-prepared sample. The cell volume of the doped sample was linearly decreased by the augmentation of the La3+ ion. The morphology and composition of Sr0.82La0.12WO4 were observed by the transmission electron microscope, scanning electron microscope, and X-ray photoelectron spectroscopy. And then the loading of Cu, Ag, Au, Pt, Ni, and Ru as cocatalysts on sub-crystallite Sr0.82La0.12WO4 sample for H2 production was studied. The optimum H2 production rate is 309.7 μmol/h/g for 1.5 wt% Ru/Sr0.82La0.12WO4, which is 3.1 times than the undoped sample. And its apparent quantum yield is 0.44% at 365 (± 15) nm. All the photocatalysts recycled after the photocatalytic reactions show no degradation.

Keywords

SrWO4 Doping Photocatalysis H2 production Cocatalyst 

Notes

Funding information

This work was financially supported by the Science and Technology Project of Chongqing Municipal Education Commission (KJQN201801407) and Talent Introduction Project of Yangtze Normal University (2017KYQD22).

Supplementary material

11581_2019_3192_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1244 kb)

References

  1. 1.
    Ke J, Younis MA, Kong Y, Zhou HR, Liu J, Lei LC, Hou Y (2018) Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review. Nano-Micro Lett 10(4):69CrossRefGoogle Scholar
  2. 2.
    Hou Y, Qiu M, Nam G, Kim MG, Zhang T, Liu KJ, Zhuang XD, Cho J, Yuan C, Feng XL (2017) Integrated hierarchical cobalt sulfide/nickel selenide hybrid nanosheets as an efficient 3D electrode for electrochemical and photoelectrochemical water splitting. Nano Lett 17(7):4202–4209CrossRefGoogle Scholar
  3. 3.
    Hou Y, Zhuang XD, Feng XL (2017) Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1(6):1700090–1700104CrossRefGoogle Scholar
  4. 4.
    Zheng YH, Lin JT, Wang QM (2012) Emissions and photocatalytic selectivity of SrWO4:Ln3+ (Eu3+, Tb3+, Sm3+ and Dy3+) prepared by a supersonic microwave co-assistance method. Photochem Photobiol Sci 11:1567–1574CrossRefGoogle Scholar
  5. 5.
    Shan ZC, Wang YM, Ding HM, Huang FQ (2009) Structure-dependent photocatalytic activities of MWO4 (M = ca, Sr, Ba). J Mol Catal A-Chem 302:54–58CrossRefGoogle Scholar
  6. 6.
    Cavalcante LS, Sczancoski JC, Batista NC, Longo E, Varela JA, Orlandi MO (2013) Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv Powder Technol 24:344–353CrossRefGoogle Scholar
  7. 7.
    Shivakumara C, Saraf R, Behera S, Dhananjaya N, Nagabhushana H (2015) Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors: facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater Res Bull 61:422–432CrossRefGoogle Scholar
  8. 8.
    Liu XY, Nie Y, Yang HX, Sun SN, Chen YY, Yang TY, Lin SL (2016) Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite. Solid State Sci 55:130–137CrossRefGoogle Scholar
  9. 9.
    Talebi R, Safari A (2016) Synthesis, characterization, and of investigation magnetic and photocatalytic property of SrWO4 nanoparticles. J Mater Sci Mater Electron 27:9842–9846CrossRefGoogle Scholar
  10. 10.
    Sahmi A, Bensadok K, Zirour H, Trari M (2017) Physical and photoelectrochemical characterizations of SrWO4 prepared by thermal decomposition: application to the photo electro-oxidation of ibuprofen. J Solid State Electrochem 21:2817–2824CrossRefGoogle Scholar
  11. 11.
    Chen D, Liu Z, Ouyang SX, Ye JH (2011) Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J Phys Chem C 115:15778–15784CrossRefGoogle Scholar
  12. 12.
    Yang J, Sun XR, Zeng T, Hu YL, Shi JW (2019) The enhancement of H2 production over Sr1-1.5xTbxWO4 solid solution under ultraviolet light irradiation. Materials 12:1487CrossRefGoogle Scholar
  13. 13.
    Yang J, Jiang PF, Yue MF, Yang DF, Cong RH, Gao WL, Yang T (2017) Bi2Ga4O9: an undoped single-phase photocatalyst for overall water splitting under visible light. J Catal 345:236–244CrossRefGoogle Scholar
  14. 14.
    Yang J, Fu H, Yang DF, Gao WL, Cong RH, Yang T (2015) ZnGa2-xInxS4 (0 ≤x ≤ 0.4) and Zn1-2y(CuGa)yGa1.7In0.3S4 (0.1≤y ≤0.2): optimize visible light photocatalytic H2 production by fine modulation of band structures. Inorg Chem 54:2467–2473CrossRefGoogle Scholar
  15. 15.
    Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRefGoogle Scholar
  16. 16.
    Wang QZ, Liu H, Jiang L, Yuan J, Shangguan WF (2009) Visible-light-responding Bi0.5Dy0.5VO4 solid solution for photocatalytic water splitting. Catal Lett 131:160–163CrossRefGoogle Scholar
  17. 17.
    Hou ZY, Cheng ZY, Li GG, Wang WX, Peng C, Li CX, Ma PA, Yang DM, Kang XJ, Lin J (2011) Electrospinning-derived Tb2(WO4)3:Eu3+ nanowires: energy transfer and tunable luminescence properties. Nanoscale 3:1568–1574CrossRefGoogle Scholar
  18. 18.
    Sun XR, Jiang PF, Gao WL, Cong RH, Yang T (2015) Effect of vacancy and activator concentrations on the luminescence of Sr1-1.5xTbx0.5xWO4 and Tb3+/Li+ co-doped phosphors. J Alloys Compd 645:517–524CrossRefGoogle Scholar
  19. 19.
    Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627CrossRefGoogle Scholar
  20. 20.
    Kudo A, Kato A (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377CrossRefGoogle Scholar
  21. 21.
    Jing D, Guo L (2006) A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. J Phys Chem B 110:11139–11145CrossRefGoogle Scholar
  22. 22.
    Hu SJ, Jia LH, Chi B, Pu J, Jian L (2014) Visible light driven (Fe, Cr)-codoped La2Ti2O7 photocatalyst for efficient photocatalytic hydrogen production. J Power Sources 226:304–312CrossRefGoogle Scholar
  23. 23.
    Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995CrossRefGoogle Scholar
  24. 24.
    Song K, Yang J, Sun Y, Wang ZY, Wang L, Cong RH, Yang T (2015) Improving photocatalytic water reduction activity for In2TiO5 by loading metal cocatalysts. J Alloys Compd 646:277–282CrossRefGoogle Scholar
  25. 25.
    Su J, Zou XX, Li GD, Wei X, Yan C, Wang YN, Zhao J, Zhou LJ, Chen JS (2011) Macroporous V2O5-BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges. J Phys Chem C 115:8064–8071CrossRefGoogle Scholar
  26. 26.
    Ni L, Tanabe M, Irie H (2013) A visible-light-induced overall water-splitting photocatalyst: conduction-band-controlled silver tantalate. Chem Commun 49:10094–10096CrossRefGoogle Scholar
  27. 27.
    Zou ZG, Ye JH, Arakawa H (2001) Photocatalytic behavior of a new series of In0.8 M 0.2TaO4 (M=Ni, Cu, Fe) photocatalysts in aqueous solutions. Catal Lett 75:3–4CrossRefGoogle Scholar
  28. 28.
    Ran JR, Zhang J, Yu JG, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor based photocatalytic water splitting. Chem Soc Rev 43:7787–7812CrossRefGoogle Scholar
  29. 29.
    Huang ZA, Miseki Y, Sayama K (2019) Solar-light-driven photocatalytic production of peroxydisulfate over noble-metal loaded WO3. Chem Commun 55(26):3813–3816CrossRefGoogle Scholar
  30. 30.
    Murthy DHK, Matsuzaki H, Wang Q, Suzuki Y, Seki K, Hisatomi T, Yamada T, Kudo A, Domen K, Furube A (2019) Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts. Sustain Energ Fuels 3(1):208–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China
  2. 2.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan province, College of Chemistry and Chemical EngineeringChina West Normal UniversityNanchongPeople’s Republic of China
  3. 3.College of Materials Science and EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations