, Volume 25, Issue 12, pp 5881–5888 | Cite as

In situ growth of hexagonal prism-like Ni(OH)2 microrods on nickel foam as binder-free electrodes

  • Gang Li
  • Zhuoqing Chang
  • Tingyu LiEmail author
  • Kaiying WangEmail author
Original Paper


In this paper, we report in situ growth of hexagonal prism-like Ni(OH)2 microrods via one-step hydrothermal process, where nickel foam is directly oxidized in a high concentration hydrogen peroxide (H2O2) solution without additional nickel sources, surfactant, or post-treatment. The nickel foam not only serves as a nickel source but also as 3D scaffold for Ni(OH)2 growth to form binder-free electrodes. The in situ growth can ensure close contact between conductive Ni foam substrate and as-formed Ni(OH)2 microrods, providing efficient electron collection paths and electrochemical stability. Mass loading of Ni(OH)2 on nickel foam could be tailored by adjusting the concentration H2O2. Possible growth mechanism of hexagonal prism-like Ni(OH)2 microrods is discussed to understand the morphologies under various H2O2 concentrations. When works as a binder-free electrode, the Ni(OH)2-coated nickel foam exhibits a remarkable areal capacitance ~ 1.598 C cm−2 (560 C g−1) at a current density of 1 mA cm−2, relatively high rate capability with 57.14% areal capacitance retained at 10 mA cm−2, as well as better cycling stability with 72.9% areal capacitance remained after 3000 charge-discharge cycles. Such superior performance demonstrates that Ni(OH)2 microrods in situ grown on metallic nickel foam substrate might be a potential electrode material for electrochemical capacitors.


Hydrothermal synthesis Nickel hydroxide microrods Supercapacitor Nickel foam 



We also thank Prof. Richard William Nelson’s kindness for proofreading.

Funding information

This research was financially supported by the National Natural Science Foundation of China (61674113, 51622507, and 61471255), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (2016138). The author KW received financial support from the Norwegian Research Council-FRINATEK programme (231416/F20).


  1. 1.
    Xu J, Sun Y, Lu M, Wang L, Zhang J, Qian J, Liu X (2018) Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chem Eng J 334:1466–1476CrossRefGoogle Scholar
  2. 2.
    Lv L, Xu K, Wang C, Wan H, Ruan Y, Liu J, Zou R, Miao L, Ostrikov K, Lan Y, Jiang J (2016) Intercalation of glucose in NiMn-layered double hydroxide nanosheets: an effective path way towards battery-type electrodes with enhanced performance. Electrochim Acta 216:35–43CrossRefGoogle Scholar
  3. 3.
    Chang Z, Li T, Li G, Wang K (2018) One-pot in-situ synthesis of Ni(OH)2–NiFe2O4 nanosheet arrays on nickel foam as binder-free electrodes for supercapacitors. J Mater Sci Mater Electron 30:600–608CrossRefGoogle Scholar
  4. 4.
    Ruan Y, Lv L, Li Z, Wang C, Jiang J (2017) Ni nanoparticles@Ni-Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors. Nanoscale 9:18032–18041CrossRefGoogle Scholar
  5. 5.
    Zhao J, Li Y, Wang G, Wei T, Liu Z, Cheng K, Ye K, Zhu K, Cao D, Fan Z (2017) Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J Mater Chem A 5:23085–23093CrossRefGoogle Scholar
  6. 6.
    Wang Y, Yin Z, Wang Z, Li X, Guo H, Wang J, Zhang D (2019) Facile construction of Co(OH)2@Ni(OH)2 core-shell nanosheets on nickel foam as three dimensional free-standing electrode for supercapacitors. Electrochim Acta 293:40–46CrossRefGoogle Scholar
  7. 7.
    Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z (2016) Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8:24525–24535CrossRefGoogle Scholar
  8. 8.
    Li H, Li X, Liang J, Chen Y (2019) Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater 9:1803987CrossRefGoogle Scholar
  9. 9.
    Xie Y, Yang C, Chen P, Yuan D, Guo K (2019) MnO2-decorated hierarchical porous carbon composites for high-performance asymmetric supercapacitors. J Power Sources 425:1–9CrossRefGoogle Scholar
  10. 10.
    Ouyang Y, Huang R, Xia X, Ye H, Jiao X, Wang L, Lei W, Hao Q (2019) Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors. Chem Eng J 355:416–427CrossRefGoogle Scholar
  11. 11.
    Li L, Xu J, Lei J, Zhang J, McLarnon F, Wei Z, Li N, Pan F (2015) A one-step, cost-effective green method to in situ fabricate Ni(OH)2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. J Mater Chem A 3:1953–1960CrossRefGoogle Scholar
  12. 12.
    Kirubasankar B, Palanisamy P, Arunachalam S, Murugadoss V, Angaiah S (2019) 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem Eng J 355:881–890CrossRefGoogle Scholar
  13. 13.
    Xiong X, Ding D, Chen D, Waller G, Bu Y, Wang Z, Liu M (2015) Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11:154–161CrossRefGoogle Scholar
  14. 14.
    Sun H, Liu S, Lu Q, Zhong H (2014) Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor. Mater Lett 128:136–139CrossRefGoogle Scholar
  15. 15.
    Liang J, Dong B, Ding S, Li C, Li BQ, Li J, Yang G (2014) Facile construction of ultrathin standing α-Ni(OH)2 nanosheets on halloysite nanotubes and their enhanced electrochemical capacitance. J Mater Chem A 2:11299–11304CrossRefGoogle Scholar
  16. 16.
    Zhang H, Zhang X, Zhang D, Sun X, Lin H, Wang C, Ma Y (2012) One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J Phys Chem B 117:1616–1627CrossRefGoogle Scholar
  17. 17.
    Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A Math Phys Eng Sci 471:20140792CrossRefGoogle Scholar
  18. 18.
    Lu P, Liu F, Xue D, Yang H, Liu Y (2012) Phase selective route to Ni(OH)2 with enhanced supercapacitance: performance dependent hydrolysis of Ni(Ac)2 at hydrothermal conditions. Electrochim Acta 78:1–10CrossRefGoogle Scholar
  19. 19.
    Yan J, Sun W, Wei T, Zhang Q, Fan Z, Wei F (2012) Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J Mater Chem 22:11494–11502CrossRefGoogle Scholar
  20. 20.
    Vasireddi R, Javvaji B, Vardhan H, Mahapatra D, Hegde G (2017) Growth of zinc oxide nanorod structures: pressure controlled hydrothermal process and growth mechanism. J Mater Sci 52:2007–2020CrossRefGoogle Scholar
  21. 21.
    Khan Y, Hussain S, Söderlind F, Käll P-O, Abbasi MA, Durrani SK (2012) Honeycomb β-Ni(OH)2 films grown on 3D nickel foam substrates at low temperature. Mater Lett 69:37–40CrossRefGoogle Scholar
  22. 22.
    Li K, Ma J, Guan X, He H, Wang M, Zhang G, Zhang F, Fan X, Peng W, Li Y (2018) 3D self-supported Ni(PO3)2-MoO3 nanorods anchored on nickel foam for highly efficient overall water splitting. Nanoscale 10:22173–22179CrossRefGoogle Scholar
  23. 23.
    Campos-Martin JM, Blanco-Brieva G, Fierro JL (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45:6962–6984CrossRefGoogle Scholar
  24. 24.
    Liu D-C, Cao L-M, Luo Z-M, Zhong D-C, Tan J-B, Lu T-B (2018) An in situ generated amorphous CoFePi and crystalline Ni(PO3)2 heterojunction as an efficient electrocatalyst for oxygen evolution. J Mater Chem A 6:24920–24927CrossRefGoogle Scholar
  25. 25.
    Cheng X, Pan Z, Lei C, Jin Y, Yang B, Li Z, Zhang X, Lei L, Yuan C, Hou Y (2019) A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J Mater Chem A 7:965–971CrossRefGoogle Scholar
  26. 26.
    Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like? ACS Nano 12:2081–2083CrossRefGoogle Scholar
  27. 27.
    Li J, Liu Z, Zhang Q, Cheng Y, Zhao B, Dai S, Wu H-H, Zhang K, Ding D, Wu Y, Liu M, Wang M-S (2019) Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57:22–33CrossRefGoogle Scholar
  28. 28.
    Xu JM, Ma KY, Cheng JP (2015) Controllable in situ synthesis of Ni(OH)2 and NiO films on nickel foam as additive-free electrodes for electrochemical capacitors. J Alloys Compd 653:88–94CrossRefGoogle Scholar
  29. 29.
    Peng L, Lv L, Wan H, Ruan Y, Ji X, Liu J, Miao L, Wang C, Jiang J (2017) Understanding the electrochemical activation behavior of co(OH)2 nanotubes during the ion-exchange process. Mater Today Energy 4:122–131CrossRefGoogle Scholar
  30. 30.
    Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36CrossRefGoogle Scholar
  31. 31.
    Xu J, Sun Y, Lu M, Wang L, Zhang J, Tao E, Qian J, Liu X (2018) Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater 152:162–174CrossRefGoogle Scholar
  32. 32.
    Xu J, Sun Y, Lu M, Wang L, Zhang J, Liu X (2018) One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci China Mater 62:699–710CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MicroNano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education)Taiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Microsystems-IMSUniversity of South-Eastern NorwayHortenNorway

Personalised recommendations