Advertisement

Ionics

, Volume 25, Issue 12, pp 5869–5879 | Cite as

Preparation and sodium storage performance of V2O5·nH2O/graphene composites

  • Jinhuan Yao
  • Tao Sun
  • Jingcheng Ji
  • Yinlu Sun
  • Shunhua Xiao
  • Yanwei LiEmail author
Original Paper
  • 116 Downloads

Abstract

V2O5·nH2O/graphene composites have been fabricated via a facile sol–gel method followed with an annealing treatment in air. The influence of incorporation of graphene on the microstructure and sodium storage performance of V2O5·nH2O were investigated. XRD, Raman, and TGA analyses validated that graphene was successfully incorporated in V2O5·nH2O particles; XPS tests revealed that the incorporation of graphene induced more V4+ in the V2O5·nH2O. When evaluated as cathode materials for sodium-ion batteries (SIBs), the V2O5·nH2O/graphene composites exhibited higher sodium storage capacity, better rate capability, enhanced Na+ diffusivity, and lower electrochemical reaction resistance as compared to the pure V2O5·nH2O. However, the incorporation of graphene had no improvement of the cycling stability of V2O5·nH2O. Ex situ XRD demonstrated that the layered structure of V2O5·nH2O collapsed upon cycling, which accounts for the capacity decay of the samples.

Keywords

Vanadium pentoxide Graphene Composite Cathode material Sodium-ion batteries 

Notes

Funding

This study is financially supported by the National Natural Science Foundation of China (51664012), Guangxi Natural Science Foundation of China (2015GXNSFGA139006 and 2017GXNSFAA198117), and Guangxi Innovation-Driven Development Major Program of China (2018AA34002).

References

  1. 1.
    Yao JH, Li YW, Massé RC, Uchaker E, Cao GZ (2018) Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater 11:205–259Google Scholar
  2. 2.
    Yue Y, Liang H (2017) Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Adv Energy Mater 7(17):1602545Google Scholar
  3. 3.
    Li YW, Yao JH, Uchaker E, Yang JW, Huang YX, Zhang M, Cao GZ (2013) Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv Energy Mater 3(9):1171–1175Google Scholar
  4. 4.
    Wang QH, Xu JT, Zhang WC, Mao ML, Wei ZX, Wang L, Cui CY, Zhu YX, Ma JM (2018) Research progress on vanadium-based cathode materials for sodium ion batteries. J Mater Chem A 6(19):8815–8838Google Scholar
  5. 5.
    Moretti A, Passerini S (2016) Bilayered nanostructured V2O5·nH2O for metal batteries. Adv Energy Mater 6(23):1600868Google Scholar
  6. 6.
    Wang HL, Bi XX, Bai Y, Wu C, Gu SC, Chen S, Wu F, Amine K, Lu J (2017) Open-structured V2O5·nH2O nanoflakes as highly reversible cathode material for monovalent and multivalent intercalation batteries. Adv Energy Mater 7(14):1602720Google Scholar
  7. 7.
    Tepavcevic S, Xiong H, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T (2012) Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6(1):530–538PubMedGoogle Scholar
  8. 8.
    Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S (2018) Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci 11(11):3157–3162Google Scholar
  9. 9.
    Li YW, Liu CZ, Xie ZP, Yao JH, Cao GZ (2017) Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A 5(32):16590–16594Google Scholar
  10. 10.
    Luo W, Gaumet JJ, Mai LQ (2017) Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective. MRS Commun 7(2):152–165Google Scholar
  11. 11.
    Wei QL, Liu J, Feng W, Sheng JZ, Tian XC, He L, An QY, Mai LQ (2015) Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A 3(15):8070–8075Google Scholar
  12. 12.
    Zhu K, Qiu H, Zhang Y, Zhang D, Chen G, Wei Y (2015) Synergetic effects of Al3+ doping and graphene modification on the electrochemical performance of V2O5 cathode materials. ChemSusChem 8(6):1017–1025PubMedGoogle Scholar
  13. 13.
    Livage J (1991) Vanadium pentoxide gels. Chem Mater 3(4):578–593Google Scholar
  14. 14.
    Huang X, Rui XH, Hng HH, Yan QY (2015) Vanadium pentoxide-based cathode materials for lithium-ion batteries: morphology control, carbon hybridization, and cation doping. Part Part Syst Charact 32(3):276–294Google Scholar
  15. 15.
    Liang YW, Lai WH, Miao Z, Chou SL (2018) Nanocomposite materials for the sodium–ion battery: a review. Small 14(5):1702514Google Scholar
  16. 16.
    Yi TF, Zhu YR, Tao W, Luo S, Xie Y, Li XF (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41Google Scholar
  17. 17.
    Han X, Gui X, Yi TF, Li Y, Yue C (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin Solid State Mater Sci 22(4):109–126Google Scholar
  18. 18.
    Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17(6):3830–3836PubMedGoogle Scholar
  19. 19.
    Huang Z, Chen Z, Ding S, Chen C, Zhang M (2018) Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324:267–275Google Scholar
  20. 20.
    Li L, Chen Z, Zhang M (2018) Mo2C embedded in S-doped carbon nanofibers for high-rate performance and long-life time Na-ion batteries. Solid State Ionics 323:151–156Google Scholar
  21. 21.
    Yang T, Liu Y, Zhang M (2017) Improving the electrochemical properties of Cr-SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ionics 308:1–7Google Scholar
  22. 22.
    Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15(1):565–573PubMedGoogle Scholar
  23. 23.
    Raju V, Rains J, Gates C, Luo W, Wang X, Stickle WF, Stucky GD, Ji X (2014) Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett 14(7):4119–4124PubMedGoogle Scholar
  24. 24.
    Etman AS, Sun J, Younesi R (2019) V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. J Energy Chem 30(3):145–151Google Scholar
  25. 25.
    Liu CF, Neale ZC, Zheng JQ, Jia XX, Huang JJ, Yan MY, Tian M, Wang S, Yang JH, Cao GZ (2019) Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ Sci.  https://doi.org/10.1039/C9EE00956F Google Scholar
  26. 26.
    Liu CZ, Yao JH, Zou ZG, Li YW, Cao GZ (2019) Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Mater Today Energy 11:218–227Google Scholar
  27. 27.
    Fu M, Chen W, Zhu XX, Liu QY (2018) One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. J Power Sources 396:41–48Google Scholar
  28. 28.
    Wang Y, Shang HM, Chou T, Cao GZ (2005) Effects of thermal annealing on the Li+ intercalation properties of V2O5·nH2O Xerogel films. J Phys Chem B 109(22):11361–11366PubMedGoogle Scholar
  29. 29.
    Yao T, Oka Y, Yamamoto N (1992) Layered structures of hydrated vanadium oxides. Part 2.-Vanadyl intercalates (VO)xV2O5·nH2O. J Mater Chem 2(3):337–340Google Scholar
  30. 30.
    Gotić M, Popović S, Ivanda M, Musić S (2003) Sol–gel synthesis and characterization of V2O5 powders. Mater Lett 57(21):3186–3192Google Scholar
  31. 31.
    Baddour-Hadjean R, Raekelboom E, Pereira-Ramos JP (2006) New structural characterization of the LixV2O5 system provided by Raman spectroscopy. Chem Mater 18(15):3548–3556Google Scholar
  32. 32.
    Zhai TY, Liu HM, Li HQ, Fang XS, Liao MY, Li L, Zhou HS, Koide Y, Bando Y, Golberg D (2010) Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater 22(23):2547–2552PubMedGoogle Scholar
  33. 33.
    Tuinstra F, Koenig FL Raman spectrum of graphite. J Chem Phys 53(3):1126–1130Google Scholar
  34. 34.
    Shanmugam M, Alsalme A, Alghamdi A, Jayavel R (2015) Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. ACS Appl Mater Interfaces 7(27):14905–14911PubMedGoogle Scholar
  35. 35.
    Holland GP, Huguenin F, Torresi RM, Buttry DA (2003) Comparison of V2O5 Xerogels prepared by the vanadate and alkoxide routes using X-ray absorption and other methods. J Electrochem Soc 150(6):A721–A725Google Scholar
  36. 36.
    Li YW, Yao JH, Uchaker E, Zhang M, Tian JJ, Liu XY, Cao GZ (2013) Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C 117(45):23507–23514Google Scholar
  37. 37.
    Li M, Qi Y, Jin W, Jiao B, Zhao J (2019) In situ growth of vanadium oxide on reduced graphene oxide for the low-temperature NO-SCR by NH3. J Wuhan Univ Technol, Mater Sci Ed 34(3):572–578Google Scholar
  38. 38.
    Li ZF, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J (2014) Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in Li-ion batteries. ACS Appl Mater Interfaces 6(21):18894–18900PubMedGoogle Scholar
  39. 39.
    Song HQ, Liu CF, Zhang CK, Cao GZ (2016) Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy 22:1–10Google Scholar
  40. 40.
    Li SY, Li XF, Li YW, Yan B, Song XS, Fan LL, Shan H, Li DJ (2017) Design of V2O5·xH2O cathode for highly enhancing sodium storage. J Alloys Compd 722:278–286Google Scholar
  41. 41.
    Sun YL, Xie ZP, Li YW (2018) Enhanced lithium storage performance of V2O5 with oxygen vacancy. RSC Adv 8(69):39371–39376Google Scholar
  42. 42.
    Liu F, Chen Z, Fang G, Wang Z, Cai Y, Tang B, Zhou J, Liang S (2019) V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett 11(1):25Google Scholar
  43. 43.
    Fang G, Zhu C, Chen M, Zhou J, Tang B, Cao X, Zheng X, Pan A, Liang S (2019) Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater 29(15):1808375Google Scholar
  44. 44.
    Wu L, Zheng J, Wang L, Xiong X, Shao Y, Wang G, Wang JH, Zhong S, Wu M (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chem Int Ed 58(3):811–815Google Scholar
  45. 45.
    Yan B, Li XF, Bai ZM, Zhao Y, Dong L, Song XS, Li DJ, Langford C, Sun XL (2016) Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy 24:32–44Google Scholar
  46. 46.
    Mahadi NB, Park JS, Park JH, Chung KY, Yi SY, Sun YK, Myung ST (2016) Vanadium dioxide - reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries. J Power Sources 326:522–532Google Scholar
  47. 47.
    Gao XT, Liu XT, Zhu XD, Yan DJ, Wang C, Feng YJ, Sun KN (2018) V2O5 nanoparticles confined in three−dimensionally organized, porous nitrogen−doped graphene frameworks: flexible and free−standing cathodes for high performance lithium storage. Carbon 140:218–226Google Scholar
  48. 48.
    Yao JH, Yin ZL, Zou ZG, Li YW (2017) Y-doped V2O5 with enhanced lithium storage performance. RSC Adv 7(51):32327–32335Google Scholar
  49. 49.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211Google Scholar
  50. 50.
    Yang XM, Rogach AL (2019) Electrochemical techniques in battery research: a tutorial for nonelectrochemists. Adv Energy Mater:1900747Google Scholar
  51. 51.
    Li YW, Huang RS, Pan GL, Yao JH, Zou ZG (2019) High-tap-density Fe-doped nickel hydroxide with enhanced lithium storage performance. ACS Omega 4(4):7759–7765PubMedPubMedCentralGoogle Scholar
  52. 52.
    Li YW, Yao JH, Liu CJ, Zhao WM, Deng WX, Zhong SK (2010) Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. Int J Hydrog Energy 35(6):2539–2545Google Scholar
  53. 53.
    Uchaker E, Cao G (2015) The role of intentionally introduced defects on electrode materials for alkali-ion batteries. ChemInform 46(39):1608–1617Google Scholar
  54. 54.
    Fang G, Wu Z, Zhou J, Zhu C, Cao X, Lin T, Chen Y, Wang C, Pan A, Liang S (2018) Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv Energy Mater 8(19):1703155Google Scholar
  55. 55.
    Tsai H-L, Hsieh C-T, Li J, Gandomi YA (2018) Enabling high rate charge and discharge capability, low internal resistance, and excellent cycleability for Li-ion batteries utilizing graphene additives. Electrochim Acta 273:200–207Google Scholar
  56. 56.
    Ma T, Sun L, Niu Q, Xu Y, Zhu K, Liu X, Guo X, Zhang J (2019) N-doped carbon-coated tin sulfide/graphene nanocomposite for enhanced lithium storage. Electrochim Acta 300:131–137Google Scholar
  57. 57.
    Huang Y, Li Y, Huang R, Yao J (2019) Ternary Fe2O3/Fe3O4/FeCO3 composite as a high-performance anode material for lithium-ion batteries. J Phys Chem C 123(20):12614–12622Google Scholar
  58. 58.
    Dong J, Jiang Y, Wei Q, Tan S, Xu Y, Zhang G, Liao X, Yang W, Li Q, An Q, Mai L (2019) Strongly coupled pyridine-V2O5·nH2O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors. Small 15(22):1900379Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinhuan Yao
    • 1
  • Tao Sun
    • 1
  • Jingcheng Ji
    • 1
  • Yinlu Sun
    • 2
  • Shunhua Xiao
    • 1
  • Yanwei Li
    • 1
    Email author
  1. 1.Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinPeople’s Republic of China
  2. 2.College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations