, Volume 25, Issue 12, pp 5829–5838 | Cite as

Na3FePO4CO3 as a cathode for hybrid-ion batteries—study of Na+/Li+ electrochemical exchange

  • Nina V. KosovaEmail author
  • Alexander A. Shindrov
Original Paper


The Na+/Li+ electrochemical exchange in Na3FePO4CO3 (NFPC) carbonophosphate is studied for the first time in a hybrid cell using Li metal anode and Li-based electrolyte. The resulting ion-exchanged product is investigated. It is shown that the complete substitution of Na for Li is not achieved. The Na+/Li+ electrochemical exchange does not cause noticeable structural changes in the mixed Na/Li iron carbonophosphate; the initial monoclinic structure is preserved. During the first few cycles, a concurrent insertion of the Li+ and Na+ ions occurs, which is changed for the predominant Li intercalation/de-intercalation subsequently. Discharge capacity of NFPC/C achieves 61 mAh g−1 at 1 C, which is superior to that in a Na cell; the operating voltage is about 0.3 V higher. The Li/Na intercalation kinetics in the in situ formed mixed Na/Li iron carbonophosphate exceeds the sodium intercalation kinetics for NFPC cycled in a Na cell (DA+ = 1 × 10−15 cm2 s−1).


Na3FePO4CO3 Hybrid-ion batteries Na+/Li+ electrochemical exchange 



The authors are grateful to their colleagues from ISSCM SB RAS: Dr. A.A. Matvienko for registration of the SEM and EDX, Dr. I.Yu. Prosanov for registration of the FTIR spectra, S.A. Petrov for registration of the Mӧssbauer spectra, T.A. Chuprikova for registration of XRD patters.

Funding information

This research was carried out within the State Assignment to ISSCM SB RAS (project 0301-2018-0001).


  1. 1.
    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164:A5019–A5025. CrossRefGoogle Scholar
  2. 2.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264. j.mattod.2014.10.040Google Scholar
  3. 3.
    Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561. CrossRefGoogle Scholar
  4. 4.
    Zhang K, Hu Z, Tao Z, Chen J (2014) Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Sci China Mater 57:42–58. CrossRefGoogle Scholar
  5. 5.
    Bianchini M, Xiao P, Wang Y, Ceder G (2017) Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv Energy Mater 7:1700514. CrossRefGoogle Scholar
  6. 6.
    Freire M, Kosova NV, Jordy C, Chateigner D, Lebedev OI, Maignan A, Pralong V (2016) A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat Mater 15:173–178. CrossRefPubMedGoogle Scholar
  7. 7.
    Asl HY, Choudhury A (2016) Combined theoretical and experimental approach to the discovery of electrochemically active mixed polyanionic phosphatonitrates, AFePO4NO3 (A=NH4, Li, K). Chem Mater 28:5029–5036. CrossRefGoogle Scholar
  8. 8.
    Kim H, Park I, Seo DH, Lee S, Kim SW, Kwon WJ, Park YU, Kim CS, Jeon S, Kang K (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372. CrossRefPubMedGoogle Scholar
  9. 9.
    Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G (2011) Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem 21:17147–17153. CrossRefGoogle Scholar
  10. 10.
    Khomyakov AP (1980) Sidorenkite, Na3Mn(PO4)(CO3), a new mineral. Int Geol Rev 22:811–814. CrossRefGoogle Scholar
  11. 11.
    Khomyakov AP (1983) Bonshtedtite, Na3Fe(PO4)(CO3) - a new mineral. Int Geol Rev 25:368–372. CrossRefGoogle Scholar
  12. 12.
    Chen H, Hautier G, Ceder G (2012) Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc 134:19619–19627. CrossRefPubMedGoogle Scholar
  13. 13.
    Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G (2012) Carbonophosphates: a new family of cathode materials for Li-ion batteries identified computationally. Chem Mater 24:2009–2016. CrossRefGoogle Scholar
  14. 14.
    Barker J, Gover RKB, Burns P, Bryan AJ (2006) Hybrid-ion. A lithium-ion cell based on a sodium insertion material. Electrochem Solid-State Lett 9:A190–A192. CrossRefGoogle Scholar
  15. 15.
    Kosova NV, Shindrov AA, Slobodyuk AB, Kellerman DG (2019) Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon. Electrochim Acta 302:119–129. CrossRefGoogle Scholar
  16. 16.
    Huang W, Zhou J, Li B, Ma J, Tao S, Xia D, Chu W, Wu Z (2014) Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Sci Rep 4(4188).
  17. 17.
    Kosova NV, Podugolnikov VR, Devyatkina ET, Slobodyuk AB (2014) Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route. Mater Res Bull 60:849–857. CrossRefGoogle Scholar
  18. 18.
    Song W, Ji X, Wu Z, Zhu Y, Yao Y, Huangfu K, Chena Q, Banks CE (2014) Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. J Mater Chem A 2:2571–2577. CrossRefGoogle Scholar
  19. 19.
    Du K, Guo H, Hu G, Peng Z, Cao Y (2013) Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J Power Sources 223:284–288. CrossRefGoogle Scholar
  20. 20.
    Kosova NV, Belotserkovsky VA (2018) Sodium and mixed sodium/lithium iron ortho-pyrophosphates: synthesis, structure and electrochemical properties. Electrochim Acta 278:182–195. CrossRefGoogle Scholar
  21. 21.
    Kim H, Park I, Seo DH, Lee S, Kim SW, Kwon WJ, Park YU, Kim CS, Jeon S, Kang K (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134:10369–10372. CrossRefPubMedGoogle Scholar
  22. 22.
    Kosova NV, Rezepova DO, Petrov SA, Slobodyuk AB (2017) Electrochemical and chemical Na+/Li+ ion exchange in Na-based cathode materials: Na1.56Fe1.22P2O7 and Na3V2(PO4)2F3. J Electrochem Soc 164:A6192–A6200. CrossRefGoogle Scholar
  23. 23.
    Barker J, Gover RKB, Burns P, Bryan AJ (2007) Li4/3Ti5/3O4 || Na3V2(PO4)2F3: an example of a hybrid-ion cell using a non-graphitic anode. J Electrochem Soc 154:A882–A887. CrossRefGoogle Scholar
  24. 24.
    Kosova NV, Rezepova DO (2017) Na1+yVPO4F1+y (0≤y≤0.5) as cathode materials for hybrid Na/Li batteries. Inorganics 5:19. CrossRefGoogle Scholar
  25. 25.
    Xiong H, Liu Y, Shao H, Yang Y (2018) Understanding the electrochemical mechanism of high sodium selective material Na3V2(PO4)2F3 in Li+/Na+ dual-ion batteries. Electrochim Acta 292:234–246. CrossRefGoogle Scholar
  26. 26.
    Zhang S, Deng C, Meng Y (2014) Bicontinuous hierarchical Na7V4(P2O7)4(PO4)/C nanorod-graphene composite with enhanced fast sodium and lithium ions intercalation chemistry. J Mater Chem A 2:20538–20544. CrossRefGoogle Scholar
  27. 27.
    Nose M, Nobuhara K, Shiotani S, Nakayama H, Nakanishi S, Iba H (2014) Electrochemical Li+ insertion capabilities of Na4-xCo3(PO4)2P2O7 and its application to novel hybrid-ion batteries. RSC Adv 4:9044–9047. CrossRefGoogle Scholar
  28. 28.
    Kosova NV, Rezepova DO (2019) Mixed sodium-lithium vanadium fluorophosphates Na3-xLixV2(PO4)2F3: the origin of the excellent high-rate performance. J Power Sources 408:120–127. CrossRefGoogle Scholar
  29. 29.
    Kosova NV, Shindrov AA (2019) Effect of mixed Li+/Na+-ion electrolyte on electrochemical performance of Na4Fe3(PO4)2P2O7 in hybrid batteries. Batteries 5:39. DOI: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry and MechanochemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations