Advertisement

Ionics

, Volume 25, Issue 11, pp 5153–5161 | Cite as

Carbon-supported Ni(OH)2 nanospheres decorated with Au nanoparticles: a promising catalyst for BH4 electrooxidation

  • Lanhua YiEmail author
  • Bin Yu
  • Junjie FeiEmail author
  • Yonglan Ding
  • Chunguang Yang
  • Xianyou WangEmail author
Original Paper
  • 57 Downloads

Abstract

An electrocatalyst for BH4 electrooxidation is facilely achieved via a two-step method, which consists of carbon substrate, Ni(OH)2 nanospheres and Au nanoparticles. Results of scanning electron microcopy, transmission electron microscopy, and X-ray diffraction show that Au nanoparticles dispersedly grow on both surfaces of carbon substrate and carbon-supported Ni(OH)2 nanospheres. The electrocatalytic activity of the as-prepared catalysts loaded with different amounts of Au and Ni(OH)2 are explored through cyclic voltammetry, chronoamperometry, chronopotentiometry, and rotating disc electrode voltammetry. Among the prepared catalysts, Au(50)/Ni(OH)2(50)/C catalyst displays the best electrocatalytic activity for BH4 electrooxidation, and the lower content of noble metal and the higher catalytic activity for BH4 electrooxidation make Au(50)/Ni(OH)2(50)/C a promising anode catalyst in application of direct borohydride fuel cells.

Keywords

Direct borohydride fuel cell (DBFC) Borohydride oxidation reaction (BOR) Au/Ni(OH)2/C catalyst Electrocatalytic activity Anodic electrocatalyst 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (21875203, 21874114, 21475114), Scientific Research Fund of Hunan Provincial Education Department (17B254), Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.

References

  1. 1.
    Celik C, San FGB, Sarac HI (2008) Effects of operation conditions on direct borohydride fuel cell performance. J Power Sources 185:197–201CrossRefGoogle Scholar
  2. 2.
    Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sust Energ Rev 14:183–199CrossRefGoogle Scholar
  3. 3.
    Demirci UB (2007) Direct borohydride fuel cell: Main issues met by the membrane–electrodes-assembly and potential solutions. J Power Sources 172:676–687CrossRefGoogle Scholar
  4. 4.
    Concha BM, Chatenet M (2009) Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media. Part I: bulk electrodes. Electrochim Acta 54:6119–6129CrossRefGoogle Scholar
  5. 5.
    Liu B, Li Z, Suda S (2004) Electrocatalysts for the anodic oxidation of borohydrides. Electrochim Acta 49:3097–3105CrossRefGoogle Scholar
  6. 6.
    Cheng K, Cao D, Yang F, Zhang D, Yan P, Yin J, Wang G (2013) Pd doped three-dimensional porous Ni film supported on Ni foam and its high performance towards NaBH4 electrooxidation. J Power Sources 242:141–147CrossRefGoogle Scholar
  7. 7.
    Yang F, Cheng K, Ye K, Wei X, Xiao X, Guo F, Wang G, Cao D (2014) High performance of Au nanothorns supported on Ni foam substrate as the catalyst for NaBH4 electrooxidation. Electrochim Acta 115:311–316CrossRefGoogle Scholar
  8. 8.
    Chatenet M, Micoud F, Roche I, Chainet E, Vondrak J (2006) Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte. Electrochim Acta 51:5452–5458CrossRefGoogle Scholar
  9. 9.
    Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49:965–978CrossRefGoogle Scholar
  10. 10.
    Santos DMF, Sequeira CAC (2010) Cyclic voltammetry investigation of borohydride oxidation at a gold electrode. Electrochim Acta 55:6775–6781CrossRefGoogle Scholar
  11. 11.
    Coowar FA, Vitins G, Mepsted GO, Waring SC, Horsfall JA (2008) Electrochemical oxidation of borohydride at nano-gold-based electrodes: application indirect borohydride fuel cells. J Power Sources 175:317–324CrossRefGoogle Scholar
  12. 12.
    Nagle LC, Rohan JF (2011) Nanoporous gold anode catalyst for direct borohydride fuel cell. Int J Hydrog Energy 36:10319–10326CrossRefGoogle Scholar
  13. 13.
    He P, Wang X, Liu Y, Liu X, Yi L (2012) Comparison of electrocatalytic activity of carbon-supported Au-M (M = Fe, Co, Ni, Cu and Zn) bimetallic nanoparticles for direct borohydride fuel cells. Int J Hydrog Energy 37:11984–11993CrossRefGoogle Scholar
  14. 14.
    Arevalo RL, Escaño MC, Wang A, Kasai H (2013) Structure and stability of borohydride on Au(111) and Au3M(111) (M = Cr, Mn, Fe, Co, Ni) surfaces. Dalton Trans 42:770–775CrossRefGoogle Scholar
  15. 15.
    Atwan MH, Macdonald CLB, Northwood DO, Gyenge EL (2006) Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. J Power Sources 158:36–44CrossRefGoogle Scholar
  16. 16.
    Krishnan P, Yang TH, Advani SG, Prasad AKJ (2008) Rotating ring-disc electrode (RRDE) investigation of borohydride electro-oxidation. J Power Sources 182:106–111CrossRefGoogle Scholar
  17. 17.
    Finkelstein DA, Letcher CD, Jones DJ, Sandberg LM, Watts DJ, Abruna HD (2013) Self-poisoning during BH4- oxidation at Pt and Au, and in situ poison removal procedures for BH4− fuel cells. J Phys Chem C 117:1571–1581CrossRefGoogle Scholar
  18. 18.
    Lima FHB, Pasqualeti AM, Concha MBM, Chatenet M, Ticianelli EA (2012) Borohydride electrooxidation on Au and Pt electrodes. Electrochim Acta 84:202–212CrossRefGoogle Scholar
  19. 19.
    Pasqualeti AM, Olu PY, Chatenet M, Lima FHB (2015) Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal 5:2778–2787CrossRefGoogle Scholar
  20. 20.
    Chen L, Dong X, Wang Y, Xia Y (2016) Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun 7:11741CrossRefGoogle Scholar
  21. 21.
    Diaz-Morales O, Ledezma-Yanez I, Koper MTM, Calle-Vallejo F (2015) Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal 5:5380–5387CrossRefGoogle Scholar
  22. 22.
    Subbaraman R, Tripkovic D, Chang K, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557CrossRefGoogle Scholar
  23. 23.
    Danilovic N, Subbaraman R, Strmcnik D, Chang KC, Paulikas AP, Stamenkovic VR, Markovic NM (2012) Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed 51:12495–12498CrossRefGoogle Scholar
  24. 24.
    Subbaraman R, Tripkovic D, Strmcnik D, Chang K, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2012) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:1256–1260CrossRefGoogle Scholar
  25. 25.
    Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430CrossRefGoogle Scholar
  26. 26.
    Huang W, Ma X, Wang H, Feng R, Zhou J, Duchesne PN, Zhang P, Chen F, Han N, Zhao F, Zhou J, Cai W, Li Y (2017) Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv Mater 29:1703057CrossRefGoogle Scholar
  27. 27.
    Xu X, Li L, Huang J, Jin H, Fang X, Liu W, Zhang N, Wang H, Wang X (2018) Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation. ACS Catal 8:8033–8045CrossRefGoogle Scholar
  28. 28.
    Wang H, Hsu Y, Chen R, Chan T, Chen H, Liu B (2015) Ni3+-induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv Energy Mater 5:1500091CrossRefGoogle Scholar
  29. 29.
    Liu S, Hu L, Xu X, Al-Ghamdi A, Fang X (2015) Nickel cobaltite nanostructures for photoelectric and catalytic applications. Small 34:4267–4283CrossRefGoogle Scholar
  30. 30.
    Yi L, Liu L, Liu X, Wang X, Yi W, He P, Wang X (2012) Carbon-supported Pt-Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: electrocatalysis and fuel cell performance. Int J Hydrog Energy 37:12650–12658CrossRefGoogle Scholar
  31. 31.
    Yi L, Hu B, Song Y, Wang X, Zou G, Yi W (2011) Studies of electrochemical performance of carbon supported Pt–Cu nanoparticles as anode catalysts for direct borohydride–hydrogen peroxide fuel cell. J Power Sources 196:9924–9930CrossRefGoogle Scholar
  32. 32.
    Nagaraju D, Lakshminarayanan V (2009) Electrochemically grown mesoporous gold film as high surface area material for electro-oxidation of alcohol in alkaline medium. J Phys Chem C 113:14922–14926CrossRefGoogle Scholar
  33. 33.
    Xu H, Ding L, Feng J, Li G (2015) Pt/Ni(OH)2-NiOOH/Pd multi-walled hollow nanorod arrays as superior electrocatalysts for formic acid electrooxidation. Chem Sci 6:6991–6998CrossRefGoogle Scholar
  34. 34.
    Wang K, Lu J, Zhuang L (2005) Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J Electroanal Chem 585:191–196CrossRefGoogle Scholar
  35. 35.
    Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376CrossRefGoogle Scholar
  36. 36.
    Mirkin MV, Yang H, Bard AJ (1992) Borohydride oxidation at a gold electrode. J Electrochem Soc 139:2212–2217CrossRefGoogle Scholar
  37. 37.
    Cheng H, Scott K (2006) Determination of kinetic parameters for borohydride oxidation on a rotating au disk electrode. Electrochim Acta 51:3429–3433CrossRefGoogle Scholar
  38. 38.
    Finkelstein DA, Mota ND, Cohen JL, Abruña HD (2009) Rotating disk electrode (RDE) investigation of BH4− and BH3OH electro-oxidation at Pt and Au: implications for BH4− fuel cells. J Phys Chem C 113:19700–19712CrossRefGoogle Scholar
  39. 39.
    Denuault G, Mirkin MV, Bard AJ (1991) Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes. J Electroanal Chem 308:27–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of ChemistryXiangtan UniversityXiangtanChina

Personalised recommendations