Advertisement

Ionics

, Volume 25, Issue 11, pp 5353–5360 | Cite as

The discharge performance of Li2MoO4/LiNO3-KNO3/Li-Mg-B alloy cell as a novel high-temperature lithium battery system

  • Xiaoying Ren
  • Tao Xu
  • Junlin Du
  • Zhaohui Pu
  • Runbo Wang
  • Zhu WuEmail author
Original Paper
  • 38 Downloads

Abstract

High-temperature battery system operated at or below 300 °C is highly desired for geothermal borehole applications. However, it remains a challenge to find suitable electrode materials meeting the need of wide borehole temperature. In this study, the discharge performance of Li2MoO4/LiNO3-KNO3/Li-Mg-B alloy battery system was studied over the temperature range of 150~300 °C with different current densities ranging from 10 to 30 mA cm−2. The electrochemical test result showed that the single cell delivered maximum discharge capacity at 250 °C, with value of 1178.6 mAh g−1 at a current density of 10 mA cm−2. Besides, it is found that the discharge capacities of the single cell increased as the current density rose at 300 °C attributed to the enhanced ionic conductivity at high temperature. As a result, the Li2MoO4/LiNO3-KNO3/Li-Mg-B alloy system is capable of being used in instrumentation for geothermal and oil/gas borehole explore between 200 and 250 °C.

Keywords

Li2MoO4 High-temperature lithium batteries Borehole applications LiNO3-KNO3 eutectic 

Notes

Acknowledgments

This work is supported by the National Nature Science Foundation of China (No. 21473234).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Guidotti RA, Reinhardt FW, Odinek J (2004) Overview of high-temperature batteries for geothermal and oil/gas borehole power sources. J Power Sources 136:257–262CrossRefGoogle Scholar
  2. 2.
    Guidotti RA (2000) High-temperature batteries for geothermal and oil/gas borehole applications. IEEE Xplore:1276–1286Google Scholar
  3. 3.
    Guidotti R, Reinhardt FW (2002) All-Lithium, iodide-based, low-melting electrolytes for high-temperature batteries, 1st edn. Electrochemical Society Meeting, Philadelphia, PAGoogle Scholar
  4. 4.
    Giwa CO (1991) Feasibility study of materials for a medium-temperature reserve cell concept. Trans Tech Publications Ltd, ZurichCrossRefGoogle Scholar
  5. 5.
    Szwarc R, Walton RD, Dallek S, Larrick BF (1982) Discharge characteristics of lithium-boron alloy anode in molten-salt thermal cells. J Electrochem Soc 129:1168–1173CrossRefGoogle Scholar
  6. 6.
    James SD, Devries LE (1976) Structure and anodic discharge behavior of lithium-boron alloys in LiCl-KCl eutectic melt. J Electrochem Soc 123:321–327CrossRefGoogle Scholar
  7. 7.
    Devries LE, Jackson LD, James SD (1979) Structure and anodic discharge behavior of lithium-boron alloys in LiCl-KCl eutectic melt (II). J Electrochem Soc 126:993–996CrossRefGoogle Scholar
  8. 8.
    Dallek S, Ernst DW, Larrick BF (1979) Thermal-analysis of lithium-boron alloys. J Electrochem Soc 126:866–870CrossRefGoogle Scholar
  9. 9.
    R.A. Sutula, F.E. Wang, Lithium-boron-magnesium low or high temp. hase alloy - with high strength, good oxidn. resistance, ductility, malleability and ease of fabrication for use in battery anodes or neutron radiation shields in nuclear reactors, Us Sec of Navy (Usna-C)Google Scholar
  10. 10.
    Wang ZJ, Niu YQ, Du JL, Xu NX, Wu Z (2011) Evaluation of Li-Mg-B alloy anode for intermediate temperature lithium batteries. Adv Mater Res 287-290:1553–1558CrossRefGoogle Scholar
  11. 11.
    P. Masset, R. Guidotti,2008Thermal activated (“thermal”) battery technology - Part IIIa: FeS(2) cathode material,Google Scholar
  12. 12.
    S. Preston, R. Guidotti, Z. Johnson, B. Burns,2008High temperature electrochemical energy storage, high temperature electronics at Albuquerque, NM,Google Scholar
  13. 13.
    R. Guidotti, F. W. Reinhardt,2004 Evaluation of the Li(Al)/MnO2 couple in LiNO3-KNO3 eutectic electrolyte for borehole applications, 41st power sources conference, at Philadelphia, PAPhiladelphia, PA,Google Scholar
  14. 14.
    Wang ZJ, Du JL, Duan WY, Niu YQ, Wu Z (2013) LiMn(2-x)NixO(4) spinel oxides as high-temperature Lithium battery cathode materials for borehole applications. Int J Electrochem Sci 8:6231–6242Google Scholar
  15. 15.
    Huang J, Yan J, Li J, Cao L, Xu Z, Wu J, Zhou L, Luo Y (2016) Assembled-sheets-like MoO 3 anodes with excellent electrochemical performance in Li-ion battery. J Alloys Compd 688:588–595CrossRefGoogle Scholar
  16. 16.
    Palanisamy K, Kim Y, Kim H, Kim JM, Yoon W-S (2015) Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J Power Sources 275:351–361CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Xie H, Wang C, He Q, Liu Q, Muhammad Z, Haleem YA, Sang Y, Chen S, Song L (2017) Probing Lithium storage mechanism of MoO2 Nanoflowers with rich oxygen-vacancy grown on graphene sheets. J Phys Chem C 121:15589–15596CrossRefGoogle Scholar
  18. 18.
    Lei Y, Hu J, Liu H, Li J (2012) Template-free synthesis of hollow core–shell MoO2 microspheres with high lithium-ion storage capacity. Mater Lett 68:82–85CrossRefGoogle Scholar
  19. 19.
    Ahn JH, Park GD, Kang YC, Lee J-H (2015) Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries. Electrochim Acta 174:102–110CrossRefGoogle Scholar
  20. 20.
    Guan B, Sun W, Wang Y (2016) Carbon-coated MnMoO 4 Nanorod for high-performance lithium-ion batteries. Electrochim Acta 190:354–359CrossRefGoogle Scholar
  21. 21.
    Solodovnikov SF, Solodovnikova ZA, Zolotova ES, Yudin VN, Gulyaeva OA, Tushinova YL, Kuchumov BM (2017) Nonstoichiometry in the systems Na2MoO4–MMoO4 (M=Co, Cd), crystal structures of Na3.36Co1.32(MoO4)3, Na3.13Mn1.43 (MoO4)3 and Na3.72Cd1.14(MoO4)3, crystal chemistry, compositions and ionic conductivity of alluaudite-type double molybdates and tungstates. J Solid State Chem 253:121–128CrossRefGoogle Scholar
  22. 22.
    Liu X, Zhao Y, Dong Y, Kuang Q, Liang Z, Lin X, Yan D, Liu H (2015) Synthesis of carbon-coated nanoplate α-Na2MoO4 and its electrochemical lithiation process as anode material for lithium-ion batteries. Electrochim Acta 154:94–101CrossRefGoogle Scholar
  23. 23.
    Liu X, Zhao Y, Dong Y, Fan Q, Kuang Q, Liang Z, Lin X, Han W, Li Q, Wen M (2015) Synthesis of one dimensional Li2MoO4 nanostructures and their electrochemical performance as anode materials for lithium-ion batteries. Electrochim Acta 174:315–326CrossRefGoogle Scholar
  24. 24.
    Komaba S, Kumagai N, Kumagai R, Kumagai N, Yashiro H (2002) Molybdenum oxides synthesized by hydrothermal treatment of a(2)MoO(4) (a=Li, Na, K) and electrochemical lithium intercalation into the oxides. Solid State Ionics 152:319–326CrossRefGoogle Scholar
  25. 25.
    Liu X, Lyu Y, Zhang Z, Li H, Hu YS, Wang Z, Zhao Y, Kuang Q, Dong Y, Liang Z, Fan Q, Chen L (2014) Nanotube Li(2)MoO(4): a novel and high-capacity material as a lithium-ion battery anode. Nanoscale 6:13660–13667CrossRefGoogle Scholar
  26. 26.
    Wang H-Y, Zou B-K, Tang Z-F, Wen Z-Y, Chen C-H (2016) Enhancing cyclability and rate performance of Li2MoO4 by carbon coating. Mater Lett 177:54–57CrossRefGoogle Scholar
  27. 27.
    Huang X, Hu Q, Liu J, Liu H (2017) Submicron Li2MoO4 material prepared by rheological phase method and its evaluation of lithium storage performances. Ionics 23:2269–2273CrossRefGoogle Scholar
  28. 28.
    Barinova AV, Rastsvetaeva RK, Nekrasov YV, Pushcharovskii DY (2001) Crystal structure of Li2MoO4. Dokl Chem 376:16–19CrossRefGoogle Scholar
  29. 29.
    Wang FE, Mitchell MA, Sutula RA, Holden JR, Bennett LH (1978) Crystal-structure study of a new compound Li5B4. J Less-Common Met 61:237–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoying Ren
    • 1
    • 2
  • Tao Xu
    • 1
    • 2
  • Junlin Du
    • 1
  • Zhaohui Pu
    • 1
  • Runbo Wang
    • 1
  • Zhu Wu
    • 1
    Email author
  1. 1.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations