Advertisement

Ionics

, Volume 25, Issue 12, pp 5681–5688 | Cite as

Adorned Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 with LiAlO2 for improved electrochemical properties in lithium-ion batteries

  • Li-Zhen WangEmail author
  • Wei Yang
  • Teng-Fei Lv
  • Ke-Zheng Gao
  • Ji YanEmail author
Original Paper
  • 111 Downloads

Abstract

In this paper, core-shell like LiAlO2-coated Li1.2Ni0.13Co0.13Mn0.54O2 composite was synthesized by an improved solvothermal method. The surface of the material becomes rough after LiAlO2 coating with a thickness of 5–10 nm. Meanwhile, the surface-coating component with the layer structure α-LiAlO2 can change the dispersion of transition metal elements. When tested in 2.0–4.8 V at 0.05 °C, the initial discharge capacity of the LiAlO2-coated sample is 206.4 mAh g−1 with the columbic efficiency of 78.0%, which is higher than that of the pristine Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 sample. Further tested under 1 C rate, the coated sample possesses 151.4 mAh g−1 of specific capacity and maintains 149.0 mAh g−1 after 50 cycles with the capacity retention of 98.4%. The improved reversible capacity, rate capability, and cycling durability of the Li1.2Ni0.13Co0.13Mn0.54O2 material are attributed to the synergistic effect of surface coating of highly Li-conductive LiAlO2 and the fuzzy interface between LiAlO2 and Li1.2Ni0.13Co0.13Mn0.54O2.

Keywords

Lithium-ion battery LiAlO2 coating Li-rich cathode material Solvothermal reaction 

Notes

Funding information

This study was financially supported by the National Natural Science Foundation of China (NSFC No. 21471135), the Key R&D and Promotion Projects in Henan Province (No. 2019410104000024), and the Doctoral Research Foundation of Zhengzhou University of Light Industry (No. 2017BSJJ043).

References

  1. 1.
    Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069–2077CrossRefGoogle Scholar
  2. 2.
    Fell CR, Carroll KJ, Chi M, Meng YS (2010) Synthesis–structure–property relations in layered, “Li-excess” oxides electrode materials Li[Li[sub 1/3−2x/3]Ni[sub x]Mn[sub 2/3−x/3]]O[sub 2] (x=1/3, 1/4, and 1/5). J Electrochem Soc 157:A1202CrossRefGoogle Scholar
  3. 3.
    Fu F, Deng Y-P, Shen C-H, Xu G-L, Peng X-X, Wang Q, Xu Y-F, Fang J-C, Huang L, Sun S-G (2014) A hierarchical micro/nanostructured 0.5Li2MnO3·0.5LiMn0.4Ni0.3Co0.3O2 material synthesized by solvothermal route as high rate cathode of lithium ion battery. Electrochem Commun 44:54–58CrossRefGoogle Scholar
  4. 4.
    Cong L-N, Gao X-G, Ma S-C, Guo X, Zeng Y-P, Tai L-H, Wang R-S, Xie H-M, Sun L-Q (2014) Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12. Electrochim Acta 115:399–406CrossRefGoogle Scholar
  5. 5.
    Li L, Zhang X, Chen R, Zhao T, Lu J, Wu F, Amine K (2014) Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J Power Sources 249:28–34CrossRefGoogle Scholar
  6. 6.
    Zhu Z, Zhu L (2014) Synthesis of layered cathode material 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery. J Power Sources 256:178–182CrossRefGoogle Scholar
  7. 7.
    Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6:1085–1091CrossRefGoogle Scholar
  8. 8.
    Jin X, Xu Q, Liu H, Yuan X, Xia Y (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136:19–26CrossRefGoogle Scholar
  9. 9.
    Lim SN, Seo JY, Jung DS, Ahn W, Song HS, Yeon S-H, Park SB (2015) Rate capability for Na-doped Li 1.167 Ni 0.18 Mn 0.548 Co 0.105 O 2 cathode material and characterization of Li-ion diffusion using galvanostatic intermittent titration technique. J Alloys Compd 623:55–61CrossRefGoogle Scholar
  10. 10.
    Chen JJ, Li ZD, Xiang HF, Wu WW, Guo X, Wu YC (2015) Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. J Solid State Electrochem 19(4):1027–1035CrossRefGoogle Scholar
  11. 11.
    Chen JJ, Li ZD, Xiang HF, Wu WW, Cheng S, Zhang LJ, Wang QS, Wu YC (2015) Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13Mn0.54O2cathode material for lithium-ion batteries. RSC Adv 5:3031–3038CrossRefGoogle Scholar
  12. 12.
    Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679CrossRefGoogle Scholar
  13. 13.
    Liang J, Zhao J, Li Y, Lee K-T, Liu C, Lin H, Cheng Q, Lan Q, Wu L, Tang S, An L, Cao Y-C (2017) In situ SiO 2 etching strategy to prepare rice husk-derived porous carbons for supercapacitor application. J Taiwan Inst Chem Eng 81:383–390CrossRefGoogle Scholar
  14. 14.
    Zhao J, Liu C, Deng H, Tang S, Liu C, Chen S, Guo J, Lan Q, Li Y, Liu Y, Ye M, Liu H, Liang J, Cao Y-C (2018) In-situ catalytic growth carbon nanotubes from metal organic frameworks for high performance lithium-sulfur batteries. Mater Today Energy 8:134–142CrossRefGoogle Scholar
  15. 15.
    Liang J, Qu T, Kun X, Zhang Y, Chen S, Cao Y-C, Xie M, Guo X (2018) Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance. Appl Surf Sci 436:934–940CrossRefGoogle Scholar
  16. 16.
    Cheng Q, Tang S, Liu C, Lan Q, Zhao J, Liang J, Wei F, Liu Z-Q, Cao Y-C (2017) Preparation of carbon encapsulated Li4Ti5O12 anode material for lithium ion battery through pre-coating method. Ionics 23:3031–3036CrossRefGoogle Scholar
  17. 17.
    Liu Y, Wang Q, Lu Y, Yang B, Su M, Gao Y, Dou A, pan J (2015) Enhanced electrochemical performances of layered cathode material Li1.5Ni0.25Mn0.75O2.5 by coating with LiAlO2. J Alloys Compd 638:1–6CrossRefGoogle Scholar
  18. 18.
    Zhang LL, Chen JJ, Cheng S, Xiang HF (2016) Enhanced electrochemical performances of Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode materials by coating LiAlO 2 for lithium-ion batteries. Ceram Int 42:1870–1878CrossRefGoogle Scholar
  19. 19.
    Huang X, Qiao Q, Sun Y, Li F, Wang Y, Ye S (2015) Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)2 coated with LiAlO2. J Solid State Electrochem 19(3):805–812CrossRefGoogle Scholar
  20. 20.
    Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3:894–904CrossRefGoogle Scholar
  21. 21.
    Liu Y, Fan X, Zhang Z, Wu H-H, Liu D, Dou A, Su M, Zhang Q, Chu D (2019) Enhanced Electrochemical Performance of Li-Rich Layered cathode materials by combined Cr doping and LiAlO2 coating. ACS Sustain Chem Eng 7(2):2225–2235CrossRefGoogle Scholar
  22. 22.
    Cheng F, Xin Y, Huang Y, Chen J, Zhou H, Zhang X (2013) Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J Power Sources 239:181–188CrossRefGoogle Scholar
  23. 23.
    Kim H-S, Kim Y, Kim S-I, Martin SW (2006) Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles. J Power Sources 161:623–627CrossRefGoogle Scholar
  24. 24.
    Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120CrossRefGoogle Scholar
  25. 25.
    Park JS, Meng X, Elam JW, Hao S, Wolverton C, Kim C, Cabana J (2014) Ultrathin Lithium-Ion Conducting Coatings for Increased Interfacial Stability in High Voltage Lithium-Ion Batteries. Chem Mater 26:3128–3134CrossRefGoogle Scholar
  26. 26.
    Kosova NV, Devyatkina ET, Kaichev VV (2007) Mixed layered Ni–Mn–Co hydroxides: crystal structure, electronic state of ions, and thermal decomposition. J Power Sources 174:735–740CrossRefGoogle Scholar
  27. 27.
    Sivaprakash S, Majumder SB (2010) Spectroscopic analyses of 0.5Li[Ni0.8Co0.15Zr0.05]O2–0.5Li[Li1/3Mn2/3]O2 composite cathodes for lithium rechargeable batteries. Solid State Ionics 181:730–739CrossRefGoogle Scholar
  28. 28.
    Moses AW, Flores HGG, Kim J-G, Langell MA (2007) Surface properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2. Appl Surf Sci 253:4782–4791CrossRefGoogle Scholar
  29. 29.
    Park JS, Roh KC, Lee J-W, Song K, Kim Y-I, Kang Y-M (2013) Structurally stabilized LiNi0.5Mn1.5O4 with enhanced electrochemical properties through nitric acid treatment. J Power Sources 230:138–142CrossRefGoogle Scholar
  30. 30.
    Arunkumar TA, Wu Y, Manthiram A (2007) Factors Influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2(M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) Solid Solutions. Chem Mater 19(12):3067–3073CrossRefGoogle Scholar
  31. 31.
    Song B, Lai MO, Lu L (2012) Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta 80:187–195CrossRefGoogle Scholar
  32. 32.
    Kim J-M, Tsuruta S, Kumagai N (2007) Electrochemical properties of Li(Li(1−x)/3CoxMn(2−2x)/3)O2 (0⩽x⩽1) solid solutions prepared by poly-vinyl alcohol (PVA) method. Electrochem Commun 9:103–108CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Sun G, Wu R (2013) Synthesis of nanosized Fe-Mn based Li-rich cathode materials for lithium-ion battery via a simple method. Electrochim Acta 96:291–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China
  2. 2.Henan Provincial Key Laboratory of Surface Interface ScienceZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations