Advertisement

Ionics

, Volume 25, Issue 11, pp 5401–5409 | Cite as

Electrochemical properties of rGO/CoFe2O4 nanocomposites for energy storage application

  • Isara KotuthaEmail author
  • Thanawut Duangchuen
  • Ekaphan Swatsitang
  • Worawat Meewasana
  • Jessada Khajonrit
  • Santi Maensiri
Original Paper
  • 75 Downloads

Abstract

The rGO/CoFe2O4 nanocomposites were synthesized by a simple facile route through a one-pot hydrothermal approach. Graphite powder was oxidized to obtain graphite oxide (GO) using modified Hummers method. The saturation magnetization at 10 kOe, retentivity, and coercivity magnetism values measured by vibrating sample magnetometry technique are 40.75 emu g−1, 11.02 emu g−1, and 370.69 Oe for CoFe2O4 NPs and 32.41 emu g−1, 0.87 emu g−1, and 70.71 Oe for rGO/CoFe2O4 nanocomposites, respectively. The CoFe2O4, rGO, and rGO/CoFe2O4 electrodes exhibit the specific capacitances values of 65.5, 35.5, and 112.9 F g−1 at a scan rate of 10 mV s−1 and 54.5, 24.2, and 100.4 F g−1 at a current density of 5.0 A g−1, respectively. Clearly, the results assured that the capacitive behavior of the nanocomposite electrode materials can be improved by the decoration of CoFe2O4 NPs onto rGO nanosheets for supercapacitor applications.

Keywords

Modified Hummers method rGO/CoFe2O4 nanocomposites One-pot hydrothermal approach Electrochemical properties Supercapacitor applications 

Notes

Acknowledgments

We would like to thank the Department of Physics, Faculty of Science, Khon Kaen University, for providing the TEM facilities, the Science and Technology Service Center, Chiang Mai University, for providing the Raman spectroscopy facilities, and the Kasetsart University (KU), Thailand, for the electrochemical measurements and analysis.

Funding information

I. Kotutha is supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0281/2552). This work has been partially supported by the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network.

References

  1. 1.
    Dai B, Fu L, Liao L, Liu N, Yan K, Chen Y, Liu Z (2011) High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 4:434–439CrossRefGoogle Scholar
  2. 2.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  3. 3.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  4. 4.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRefGoogle Scholar
  5. 5.
    Ding Y, Yang Y, Shao H (2011) High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim Acta 56:9433–9438CrossRefGoogle Scholar
  6. 6.
    Lavela P, Tirado JL, Vidal-Abarca C (2007) Sol–gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochim Acta 52:7986–7995CrossRefGoogle Scholar
  7. 7.
    Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172:379–387CrossRefGoogle Scholar
  8. 8.
    Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 53:2380–2385CrossRefGoogle Scholar
  9. 9.
    Chodankar NR, Selvaraj S, Ji SH, Kwon Y, Kim DH (2019) Interface-engineered nickel cobaltite nanowires through NiO atomic layer deposition and nitrogen plasma for high-energy, long-cycle-life foldable all-solid-state supercapacitors. Small 15:1803716CrossRefGoogle Scholar
  10. 10.
    Feng X, Huang Y, Chen X, Wei C, Zhang X, Chen M (2018) Hierarchical CoFe2O4/NiFe2O4 nanocomposites with enhanced electrochemical capacitive properties. J Mater Sci 53:2648–2657CrossRefGoogle Scholar
  11. 11.
    Feng X, Huang Y, Li C, Chen X, Zhou S, Gao X, Chen C (2019) Controllable synthesis of porous NiCo2O4/NiO/Co3O4 nanoflowers for asymmetric all-solid-state supercapacitors. Chem Eng J 368:51–60CrossRefGoogle Scholar
  12. 12.
    Tian L, Zhuang Q, Li J, Wu C, Shi Y, Sun S (2012) The production of self-assembled Fe2O3–graphene hybrid materials by a hydrothermal process for improved Li-cycling. Electrochim Acta 65:153–158CrossRefGoogle Scholar
  13. 13.
    Liu H, Huang J, Li X, Liu J, Zhang Y, Du K (2012) Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl Surf Sci 258:4917–4921CrossRefGoogle Scholar
  14. 14.
    Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539CrossRefGoogle Scholar
  15. 15.
    Chakrabarti MH, Low CTJ, Brandon NP, Yufit V, Hashim MA, Irfan MF, Akhtar J, Ruiz Trejo E, Hussain MA (2013) Progress in the electrochemical modification of graphene-based materials and their applications. Electrochim Acta 107:425–440CrossRefGoogle Scholar
  16. 16.
    Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136:4631–4640CrossRefGoogle Scholar
  17. 17.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  18. 18.
    Jagannadham K (2012) Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metall Mater Trans B Process Metall Mater Process Sci 43:316–324CrossRefGoogle Scholar
  19. 19.
    Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180CrossRefGoogle Scholar
  20. 20.
    Kotutha I, Swatsitang E, Meewassana W, Maensiri S (2015) One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites. Jpn J App Phys 54:06FH10CrossRefGoogle Scholar
  21. 21.
    He P, Yang K, Wang W, Dong F, Du L, Deng Y (2013) Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ J Electrochem 49:359–364CrossRefGoogle Scholar
  22. 22.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  23. 23.
    He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L (2015) Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv 5:11966–11972CrossRefGoogle Scholar
  24. 24.
    Yan J, Liu J, Fan Z, Wei T, Zhang L (2012) High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50:2179–2188CrossRefGoogle Scholar
  25. 25.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833CrossRefGoogle Scholar
  26. 26.
    Zhang XJ, Wang GS, Cao WQ, Wei YZ, Liang JF, Guo L, Cao MS (2014) Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces 6:7471–7478CrossRefGoogle Scholar
  27. 27.
    Yao Y, Yang Z, Zhang D, Peng W, Sun H, Wang S (2012) Magnetic CoFe2O4–graphene hybrids: facile synthesis, characterization, and catalytic properties. Ind Eng Chem Res 51:6044–6051CrossRefGoogle Scholar
  28. 28.
    Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24:4924–4955CrossRefGoogle Scholar
  29. 29.
    Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108CrossRefGoogle Scholar
  30. 30.
    Sakhaei F, Salahi E, Olya ME, Mobasherpour I (2017) Synthesis, optical and magnetic properties of a new nanocomposite HAp/CoFe2O4/RGO. Micro Nano Lett 12:920–923CrossRefGoogle Scholar
  31. 31.
    Zong M, Huang Y, Zhang N (2015) Reduced graphene oxide-CoFe2O4 composite: synthesis and electromagnetic absorption properties. Appl Surf Sci 345:272–278CrossRefGoogle Scholar
  32. 32.
    Wang R, Li Q, Cheng L, Li H, Wang B, Zhao X, Guo P (2014) Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius. Colloids Surf A Physicochem Eng Asp 457:94–99CrossRefGoogle Scholar
  33. 33.
    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRefGoogle Scholar
  34. 34.
    Guan Q, Cheng J, Wang B, Ni W, Gu G, Li X, Huang L, Yang G, Nie F (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6:7626–7632CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Isara Kotutha
    • 1
    Email author
  • Thanawut Duangchuen
    • 2
  • Ekaphan Swatsitang
    • 2
  • Worawat Meewasana
    • 1
    • 3
  • Jessada Khajonrit
    • 3
    • 4
  • Santi Maensiri
    • 1
    • 3
  1. 1.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.Physics Department, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.RNN on Nanomaterials and Advanced CharacterizationsSuranaree University of TechnologyNakhon RatchasimaThailand
  4. 4.Thailand Center of Excellence in PhysicsChiang MaiThailand

Personalised recommendations