Advertisement

Ionics

, Volume 25, Issue 11, pp 5485–5494 | Cite as

3D Ni3S2@Mn-Co-OH cross-linked nanosheets on Ni foam for high performance supercapacitor

  • Xiaoqing WangEmail author
  • Songran Tian
  • Xiaoqing Zhang
  • Guoyan Li
  • Ying Liu
  • Botao Chen
  • Bowen Cheng
Original Paper
  • 71 Downloads

Abstract

A 3D Ni3S2@Mn-Co-OH/NF cross-linked nanosheet heterostructure composite electrode has been successfully fabricated by a facile two-step hydrothermal method. The as-prepared Ni3S2@Mn-Co-OH/NF composite electrode exhibits a high capacitance (3163 F g−1 at a current density of 3 mA cm−2), a superior rate performance (2071 F g−1 at a current rate of 30 mA cm−2), and stable cycling property (maintaining 96.6% of the initial capacitance after 4000 cycles at a current rate of 10 mA cm−2). This excellent electrochemical performance can be ascribed to the unique cross-linked nanosheet heterostructure formed directly on Ni foam current collector and the synergistic effect between Mn-Co-OH and Ni3S2 of the composite electrode.

Keywords

Transitional metal oxide Nanostructure Sulfides Supercapacitor 

Notes

Funding information

This work was supported by the Natural Science Foundation of Tianjin (16YFZCGX00250), Natural Science Foundation of Tianjin (18JCTPJC63000), and National Natural Science Foundation of China (51508384).

References

  1. 1.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828.  https://doi.org/10.1039/c1cs15060j CrossRefPubMedGoogle Scholar
  2. 2.
    Wang W, Guo S, Penchev M, Ruiz I, Bozhilov KN, Yan D, Ozkan M, Ozkan CS (2013) Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2:294–303.  https://doi.org/10.1016/j.nanoen.2012.10.001 CrossRefGoogle Scholar
  3. 3.
    Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251, 2283.  https://doi.org/10.1002/adma.201304137 CrossRefPubMedGoogle Scholar
  4. 4.
    Xiao C, Zhang X, MacFarlane DR (2018) Dual-MnCo2O4/Ni electrode with three-level hierarchy for high-performance electrochemical energy storage. Electrochim Acta 280:55–61.  https://doi.org/10.1016/j.electacta.2018.05.080 CrossRefGoogle Scholar
  5. 5.
    Li L, Peng S, Cheah Y, Teh P, Wang J, Wee G, Ko Y, Wong C, Srinivasan M (2013) Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chemistry 19:5892–5898.  https://doi.org/10.1002/chem.201204153 CrossRefPubMedGoogle Scholar
  6. 6.
    Liu L, Zhang H, Fang L, Mu Y, Wang Y (2016) Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors. J Power Sources 327:135–144.  https://doi.org/10.1016/j.jpowsour.2016.07.054 CrossRefGoogle Scholar
  7. 7.
    Shi X, Wang H, Ji S, Linkov V, Liu F, Wang R (2019) CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors. Chem Eng J 364:320–327.  https://doi.org/10.1016/j.cej.2019.01.156 CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Zong Q, Zhang Q, Yang H, Wang Q, Wang H (2019) Three-dimensional core-shell NiCoP@ NiCoP array on carbon cloth for high performance flexible asymmetric supercapacitor. Electrochim Acta 299:441–450.  https://doi.org/10.1016/j.electacta.2019.01.043 CrossRefGoogle Scholar
  9. 9.
    Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed Engl 53:1488–1504.  https://doi.org/10.1002/anie.201303971 CrossRefPubMedGoogle Scholar
  10. 10.
    Xu K, Li S, Yang J, Xu H, Hu J (2016) Hierarchical MnO2 nanosheets on electrospun NiCo2O4 nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors. J Alloys Compd 678:120–125.  https://doi.org/10.1016/j.jallcom.2016.03.255 CrossRefGoogle Scholar
  11. 11.
    Liu S, Lee SC, Patil U, Shackery I, Kang S, Zhang K, Park JH, Chung KY, Chan Jun S (2017) Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J Mater Chem A 5:1043–1049.  https://doi.org/10.1039/C6TA07842G CrossRefGoogle Scholar
  12. 12.
    Zhou J-J, Han X, Tao K, Li Q, Li Y-L, Chen C, Han L (2018) Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for high-performance supercapacitors and efficient oxygen evolution reaction. Chem Eng J 354:875–884.  https://doi.org/10.1016/j.cej.2018.08.102 CrossRefGoogle Scholar
  13. 13.
    Feng Y, Liu W, Sun L, Zhu Y, Chen Y, Meng M, Li J, Yang J, Zhang Y, Liu K (2018) Hierarchical MnCo2O4@CoMoO4 core-shell nanowire arrays supported on Ni foam for supercapacitor. J Alloys Compd 753:761–770.  https://doi.org/10.1016/j.jallcom.2018.04.217 CrossRefGoogle Scholar
  14. 14.
    Yang Y, Fei H, Ruan G, Xiang C, Tour JM (2014) Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater 26:8163–8168.  https://doi.org/10.1002/adma.201402847 CrossRefPubMedGoogle Scholar
  15. 15.
    Xu P, Liu J, Yan P, Miao C, Ye K, Cheng K, Yin J, Cao D, Li K, Wang G (2016) Preparation of porous cadmium sulphide on nickel foam: a novel electrode material with excellent supercapacitor performance. J Mater Chem A 4:4920–4928.  https://doi.org/10.1039/C5TA09740A CrossRefGoogle Scholar
  16. 16.
    Shi X, Wang H, Kannan P et al (2019) Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications. J Mater Chem A 7:3344–3352.  https://doi.org/10.1039/C8TA10912E CrossRefGoogle Scholar
  17. 17.
    Ou X, Gan L, Luo Z (2014) Graphene-templated growth of hollow Ni3S2 nanoparticles with enhanced pseudocapacitive performance. J Mater Chem A 2:19214–19220.  https://doi.org/10.1039/C4TA04502E CrossRefGoogle Scholar
  18. 18.
    Jayalakshmi M, Mohan Rao M, Choudary BM (2004) Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions. Electrochem Commun 6:1119–1122.  https://doi.org/10.1016/j.elecom.2004.09.004 CrossRefGoogle Scholar
  19. 19.
    Zhang L, Wu HB, Lou XW (2012) Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chem Commun (Camb) 48:6912–6914.  https://doi.org/10.1039/c2cc32750c CrossRefGoogle Scholar
  20. 20.
    Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1:7880.  https://doi.org/10.1039/c3ta11167a CrossRefGoogle Scholar
  21. 21.
    Patil SJ, Kim JH, Lee DW (2017) Self-assembled Ni3S2//CoNi2S4 nanoarrays for ultra high-performance supercapacitor. Chem Eng J 322:498–509.  https://doi.org/10.1016/j.cej.2017.03.095 CrossRefGoogle Scholar
  22. 22.
    Zhu T, Wu HB, Wang Y, Xu R, Lou XWD (2012) Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv Energy Mater 2(2):1497–1502.  https://doi.org/10.1002/aenm.201200269 CrossRefGoogle Scholar
  23. 23.
    Xiao C, Zhang X, Mendes T, Knowles GP, Chaffee A, MacFarlane DR (2016) Highly ordered hierarchical mesoporous MnCo2O4 with cubic Iα3d symmetry for electrochemical energy storage. J Phys Chem C 120:23976–23983.  https://doi.org/10.1021/acs.jpcc.6b08021 CrossRefGoogle Scholar
  24. 24.
    Huan F, Meng R, Sui Y et al (2018) One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. J Alloys Compd 742:844–851.  https://doi.org/10.1016/j.jallcom.2018.01.324 CrossRefGoogle Scholar
  25. 25.
    Huang F, Sui Y, Wei F, Qi J, Meng Q, He Y (2018) Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. J Mater Sci Mater Electron 29(3):2525–2536.  https://doi.org/10.1007/s10854-017-8175-9 CrossRefGoogle Scholar
  26. 26.
    Huang F, Yan A, Sui Y, Wei F, Qi J, Meng Q, He Y (2017) One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. J Mater Sci Mater Electron 28(17):12747–12754.  https://doi.org/10.1007/s10854-017-7100-6 CrossRefGoogle Scholar
  27. 27.
    Liu G, Wang B, Liu T, Wang L, Luo H, Gao T, Wang F, Liu A, Wang D (2018) 3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors. J Mater Chem A 6(4):1822–1831.  https://doi.org/10.1039/C7TA10140F CrossRefGoogle Scholar
  28. 28.
    Lv Y, Liu A, Che H, Mu J, Guo Z, Zhang X, Bai Y, Zhang Z, Wang G, Pei Z (2018) Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chem Eng J 336:64–73.  https://doi.org/10.1016/j.cej.2017.11.049 CrossRefGoogle Scholar
  29. 29.
    Zhao L, Yang M, Zhang Z, Ji Y, Teng Y, Feng Y, Liu X (2018) Hierarchical micro/nanostructured Co3O4@MnCo2O4 core-shell nanowire arrays on Ni foam for electrochemical energy storage. Inorg Chem Commun 89:22–26.  https://doi.org/10.1016/j.inoche.2018.01.003 CrossRefGoogle Scholar
  30. 30.
    Zou X, Sun Q, Zhang Y, Li GD, Liu Y, Wu Y, Yang L, Zou X (2018) Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci Rep 8(1):4478.  https://doi.org/10.1038/s41598-018-22448-w CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen F, Wang H, Ji S, Linkov V, Wang R (2018) Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J 345:48–57.  https://doi.org/10.1016/j.cej.2018.03.152 CrossRefGoogle Scholar
  32. 32.
    Kamali-Heidari E, Xu Z-L, Sohi MH, Ataie A, Kim J-K (2018) Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim Acta 271:507–518.  https://doi.org/10.1016/j.electacta.2018.03.183 CrossRefGoogle Scholar
  33. 33.
    Yu S, Zhang Y, Lou G, Wu Y, Zhu X, Chen H, Shen Z, Fu S, Bao B, Wu L (2018) Synthesis of NiMn-LDH nanosheet@Ni3S2 nanorod hybrid structures for supercapacitor electrode materials with ultrahigh specific capacitance. Sci Rep 8:5246.  https://doi.org/10.1038/s41598-018-23642-6 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lv Y, Guo Z, Liu A, Che H, Mu J, Zhang X, Bai Y, Zhang Z, Wang G (2017) Self-supported hierarchical MnCo2O4@Ni3S2 core–shell heterostructures on Ni foam as a binder-free electrode for high-performance supercapacitors. Ceram Int 43:12948–12956.  https://doi.org/10.1016/j.ceramint.2017.06.193 CrossRefGoogle Scholar
  35. 35.
    Gong Y, Xu Z, Pan H, Lin Y, Yang Z, Du X (2018) Hierarchical Ni3S2 nanosheets coated on Co3O4 nanoneedle arrays on 3D nickel foam as an efficient electrocatalyst for the oxygen evolution reaction. J Mater Chem A 6:5098–5106.  https://doi.org/10.1039/C7TA11104E CrossRefGoogle Scholar
  36. 36.
    Qi J, Chang Y, Sui Y, He Y, Meng Q, Wei F, Ren Y, Jin Y (2018) Facile synthesis of ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv Mater Interfaces 5:1700985.  https://doi.org/10.1002/admi.201700985 CrossRefGoogle Scholar
  37. 37.
    Zhong X, Zhang L, Tang J, Chai J, Xu J, Cao L, Yang M, Yang M, Kong W, Wang S, Cheng H, Lu Z, Cheng C, Xu B, Pan H (2017) Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. J Mater Chem A 5:17954–17962.  https://doi.org/10.1039/C7TA04755J CrossRefGoogle Scholar
  38. 38.
    Baji DS, Jadhav HS, Nair SV, Rai AK (2018) Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries. J Solid State Chem 262:191–198.  https://doi.org/10.1016/j.jssc.2018.03.022 CrossRefGoogle Scholar
  39. 39.
    Wang L, Guan Y, Zhao X, Mu J, Che H, Li H, Guo Z (2018) ZnCo2O4@MnCo2O4 heterojunction structured nanosheets for high-performance supercapacitor. J Mater Sci Mater Electron 29:5782–5790.  https://doi.org/10.1007/s10854-018-8549-7 CrossRefGoogle Scholar
  40. 40.
    Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474.  https://doi.org/10.1016/j.electacta.2013.11.081 CrossRefGoogle Scholar
  41. 41.
    Huo H, Zhao Y, Xu C (2014) 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A 2(36):15111–15117.  https://doi.org/10.1039/C4TA02857K CrossRefGoogle Scholar
  42. 42.
    Wang Q, Qin X, Jiang P, Dai J, Li W, Gao H (2018) Core/shell structure NiCo2O4@MnCo2O4 nanofibers fabricated by different temperatures for high-performance supercapacitors. Materials Research Express 3:035503.  https://doi.org/10.1088/2053-1591/aab0eb CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Hu L, Zhao S, Wu L (2016) Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093.  https://doi.org/10.1002/adfm.201600494 CrossRefGoogle Scholar
  44. 44.
    Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321.  https://doi.org/10.1016/j.electacta.2015.02.081 CrossRefGoogle Scholar
  45. 45.
    Deng F, Tie J, Lan B, Sun M, Peng S, Deng S, Li B, Sun W, Yu L (2015) NiCo2O4/MnO2 heterostructured nanosheet: influence of preparation conditions on its electrochemical properties. Electrochim Acta 176:359–368.  https://doi.org/10.1016/j.electacta.2015.07.027 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoqing Wang
    • 1
    Email author
  • Songran Tian
    • 1
  • Xiaoqing Zhang
    • 1
  • Guoyan Li
    • 1
  • Ying Liu
    • 2
  • Botao Chen
    • 3
  • Bowen Cheng
    • 4
  1. 1.School of Chemistry and Chemical EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.School of Environmental and Chemical EngineeringTianjin Polytechnic UniversityTianjinChina
  3. 3.Tianjin Bamo Science and Technology Co. LtdTianjinChina
  4. 4.State Key Laboratory of Hollow Fiber Membrane Materials and ProcessesTianjinChina

Personalised recommendations