, Volume 25, Issue 11, pp 5269–5276 | Cite as

Blending of LiFePO4/C microparticles with different sizes and its effect on the electrochemical performance of LiFePO4/C-based batteries

  • Lizhi WenEmail author
  • Xiaoyan Wang
  • Xiaoming Liu
  • Jiachen Sun
  • Liwei An
  • Xin Ren
  • Zhenfei Li
  • Guangchuan LiangEmail author
  • Shaozhong Jiang
Original Paper


Blended spherical cathodes of lithium iron phosphate with different morphology were prepared using a physical mixing method. The lithium iron phosphate spherical material with high tapped density and non-spherical lithium iron phosphate material with good processing properties were compounded in different proportions. The processability and electrochemical properties of blended spherical cathodes were systematically investigated. The characterization results suggest that the blended spherical cathode material not only exerts the complementary advantages of the spherical and non-spherical material, but also produces a synergistic effect, which improves the processing property of the spherical material. This unique property reduces the internal resistance of the contact between the particles, thereby reducing the internal resistance of battery and improving the overall performance of battery.


Blended spherical cathodes Lithium-ion battery Internal resistance Electrochemical performance 


Funding information

This work received financial support from the Natural Science Foundation of Tianjin (grant number 18JCTPJC52800).


  1. 1.
    Hsieh CT, Pai CT, Chen YF, Chen IL, Chen WY (2014) Preparation of lithiumiron phosphate cathode materials with different carbon contents using glucose additive for Li-ion batteries. J Taiwan Inst Chem Eng 45:1501–1508CrossRefGoogle Scholar
  2. 2.
    Jegal JP, Kim KB (2013) Carbon nanotube-embedding LiFePO4 as a cathode material for high rate lithium ion batteries. J Power Sources 243:859–864CrossRefGoogle Scholar
  3. 3.
    Huang B, Zheng XD, Fan XP, Song GH, Lu M (2011) Enhanced rate performance of nano–micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochim Acta 56:4865–4868CrossRefGoogle Scholar
  4. 4.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954CrossRefGoogle Scholar
  5. 5.
    Gong C, Xue Z, Wen S, Ye Y, Xie X (2016) Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J Power Sources 318:93–112CrossRefGoogle Scholar
  6. 6.
    Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79CrossRefGoogle Scholar
  7. 7.
    Vicente N, Haro M, Cíntora-Juárez D, Vicente CP, Tirado JL (2015) LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim Acta 163:323–329CrossRefGoogle Scholar
  8. 8.
    Yan CC, Jang JH, Jiang JR (2016) Study of electrochemical performances of lithium titanium oxide–coated LiFePO4/C cathode composite at low and high temperatures. Appl Energy 162:1419–1427CrossRefGoogle Scholar
  9. 9.
    Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRefGoogle Scholar
  10. 10.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148:45–51CrossRefGoogle Scholar
  11. 11.
    Xu D, Chu X, He YB, Ding Z, Li B, Han W, Du H, Kang F (2015) Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure. Electrochim Acta 152:398–407CrossRefGoogle Scholar
  12. 12.
    Tang H, Tan L, Xu J (2013) Synthesis and characterization of LiFePO4 coating with aluminum doped zinc oxide. Trans Nonferrous Met Soc China 23:451–455CrossRefGoogle Scholar
  13. 13.
    Ni JF, Morishita M, Kawabe Y, Watada M, Takeichi N (2010) T. Sakaia hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources 195:2877–2882CrossRefGoogle Scholar
  14. 14.
    Goktepe H, Sahan H, Patat S (2016) Effect of silver and carbon double coating on the electrochemical performance of LiFePO4 cathode material for lithium ion batteries. Int J Hydrog Energy 41:9774–9779CrossRefGoogle Scholar
  15. 15.
    He JC (2014) Effect of carbon source on the particles morphology and carbon structure of LiFePO4/C composites. Adv Mater Res 968:53–57CrossRefGoogle Scholar
  16. 16.
    Ni JF, Gao LJ, Lu L (2014) Carbon coated lithium cobalt phosphate for Li-ion batteries: comparison of three coating techniques. J Power Sources 221:35–41CrossRefGoogle Scholar
  17. 17.
    Starke B, Seidlmayer S, Jankowsky S, Dolotko O, Gilles R, Pettinger KH (2017) Influence of particle morphologies of LiFePO4 on water and solvent-based processing and electrochemical properties. Sustain Sci 9:888CrossRefGoogle Scholar
  18. 18.
    Shao DQ, Wang JX, Dong XT (2014) Preparation and electrochemical performances of LiFePO4/C composite nanobelts via facile electrospinning. J Mater Sci-Mater Electron 25:1040–1046CrossRefGoogle Scholar
  19. 19.
    Li YC, Geng GW, Hao JH, Zhang JM, Yang CC, Li BJ (2015) Optimized synthesis of LiFePO4 composites via rheological phase assisted method from FePO4 with acetic acid as dispersant. Electrochim Acta 186:157–164CrossRefGoogle Scholar
  20. 20.
    Lim S, Yoon CS, Cho J (2008) Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem Mater 20:4560–4564CrossRefGoogle Scholar
  21. 21.
    Chikkannanavar SB, Bernardi DM, Liu LY (2014) A review of blended cathode materials for use in Li-ion batteries. J Power Sources 248:91–100CrossRefGoogle Scholar
  22. 22.
    Kim HS, Kim SI, Kim WS (2006) A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery. J Electrochim Acta 52:1457–1461CrossRefGoogle Scholar
  23. 23.
    Liu L, Yan X, Wang YH, Wei YJ (2014) Studies of the electrochemical properties and thermal stability of LiNi1/3Co1/3Mn1/3O2/LiFePO4 composite cathodes for lithium ion batteries. Ionics 20:1087–1093CrossRefGoogle Scholar
  24. 24.
    Myung ST, Hosoya K, Komaba S, Yashiro H, Sun YK, Kumagai N (2006) Improvement of cycling performance of Li1.1Mn1.9O4 at 60°C by NiO addition for Li-ion secondary batteries. Electrochim Acta 51:5912–5919CrossRefGoogle Scholar
  25. 25.
    Calderon CA, Thomas JE, Lener G, Barraco DE, Visintin A (2017) Electrochemical comparison of LiFePO4 synthesized by a solidstate method using either microwave heating or a tube furnace. J Appl Electrochem 44:1179CrossRefGoogle Scholar
  26. 26.
    Khakani S, Rochefort D, MacNeil DD (2016) Study of LiFePO4 with different morphologies prepared via three synthetic routes. J Electrochem Soc 163:A1131–A1316Google Scholar
  27. 27.
    Zhang YP, Wu LL, Zhao JB, Yu WY (2015) Controllable synthesis and electrochemical properties of LiFePO4 nano- and microcrystals with multiform morphologies. Mater Chem Phys 166:182–189CrossRefGoogle Scholar
  28. 28.
    Zhao T, Zhang XJ, Li X, Lu SG (2015) Crystallinity dependence of electrochemical properties for LiFePO4. Rare Metals 34:334–337CrossRefGoogle Scholar
  29. 29.
    Sun JC, Li ZF, Ren X, Wang L, Liang GC (2019) High volumetric energy density of LiFePO4/C microspheres based on xylitol-polyvinyl alcohol complex carbon sources. J Alloys Compd 773:788–795CrossRefGoogle Scholar
  30. 30.
    Wu Y, Wen Z, Li J (2011) Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries. Adv Mater 23:1126–1129CrossRefGoogle Scholar
  31. 31.
    Jiang Y, Liao S, Liu Z, Xiao G, Liu Q, Song H (2013) High performance LiFePO4 microsphere composed of nanofibers with an alcohol-thermal approach. J Mater Chem A 1:4546–4551CrossRefGoogle Scholar
  32. 32.
    Karkar T, Jaouhair A, Tranchot D (2017) How silicon electrodes can be calendered without altering their mechanical strength and cycle life. J Power Source 371:136–147CrossRefGoogle Scholar
  33. 33.
    Liu H, Liu YY, An LW, Zhao XX, Wang L, Liang GC (2017) High energy density LiFePO4/C cathode material synthesized by wet ball milling combined with spray drying method. J Electrochem Soc 164:A3666–A3672CrossRefGoogle Scholar
  34. 34.
    Bitsch B, Dittmann J, Schmitt M, Scharfer P, Schabel W, Willenbacher N (2014) A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties. J Power Sources 265:81–90CrossRefGoogle Scholar
  35. 35.
    Zhang ZA, Zeng T, Qu CM (2012) Cycle performance improvement of LiFePO4 cathode with polyacrylicacid acid as binder. Electrochim Acta 80:440–444CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lizhi Wen
    • 1
    • 2
    Email author
  • Xiaoyan Wang
    • 1
    • 3
  • Xiaoming Liu
    • 2
  • Jiachen Sun
    • 1
  • Liwei An
    • 1
  • Xin Ren
    • 1
  • Zhenfei Li
    • 1
  • Guangchuan Liang
    • 1
    • 4
    • 5
    Email author
  • Shaozhong Jiang
    • 2
  1. 1.Institute of Power Source and Ecomaterials ScienceHebei University of TechnologyTianjinChina
  2. 2.Automobile & Rail Transportation SchoolTianjin Sino-German University of Applied SciencesTianjinChina
  3. 3.Qing Gong CollegeNorth China University of Science and TechnologyTangshanChina
  4. 4.Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology)Ministry of EducationTianjinChina
  5. 5.Key Laboratory for New Type of Functional Materials in Hebei ProvinceHebei University of TechnologyTianjinChina

Personalised recommendations