Advertisement

Ionics

, Volume 25, Issue 11, pp 5575–5583 | Cite as

Memristive switching in ionic liquid–based two-terminal discrete devices

  • Mahesh Y. Chougale
  • Swapnil R. Patil
  • Sandeep P. Shinde
  • Sagar S. Khot
  • Akshay A. Patil
  • Atul C. Khot
  • Sourabh S. Chougule
  • Christos K. Volos
  • Sungjun KimEmail author
  • Tukaram D. DongaleEmail author
Original Paper
  • 202 Downloads

Abstract

In the present work, we have developed discrete and two-terminal memristive devices using 1-butyl-3-methylimidazolium bromide [Bmim][Br] ionic liquid (IL). We have varied the mole fractions (x) of IL from 0.0001 to 1 and investigated its memristive properties. The bipolar resistive switching and frequency-dependent limiting linear characteristics are clearly observed in developed IL memristive devices. Furthermore, analog memory property indicates that the IL memristive device is a potential candidate to develop electronic synapse devices for neuromorphic computing application. It is observed that the 0.010-mol fraction-based memristive device shows good resistive switching, good memory window (ratio of HRS/LRS) (~ 36), and uniform endurance. In order to cross-check our approach, we have developed 1-ethyl-3-methylimidazolium bromide [Emim][Br] IL devices (x = 0.0001 to 1) and studied its memristive properties. Interestingly, [Emim][Br] IL devices also show the memristive-like properties similar to [Bmim][Br] IL memristive devices. The results of both IL-based devices indicate that the two-terminal structure with IL as an active element could be a possible solution to develop two-terminal discrete memristive devices.

Graphical abstract

ᅟ.

Keywords

Memristive device Ionic liquid Resistive switching Memory 

Notes

Funding information

Dr. T. D. Dongale thank the Shivaji University, Kolhapur for financial assistance under the ‘Research Initiation Scheme’.

Supplementary material

11581_2019_3082_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1283 kb)

References

  1. 1.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83.  https://doi.org/10.1038/nature06932 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kavehei O, Iqbal A, Kim YS, Eshraghian K, Al-Sarawi SF, Abbott D (2010) The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc R Soc A Math Phys Eng Sci 466:2175–2202.  https://doi.org/10.1098/rspa.2009.0553 CrossRefGoogle Scholar
  3. 3.
    Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W (2011) A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett 12:389–395.  https://doi.org/10.1021/nl203687n CrossRefPubMedGoogle Scholar
  4. 4.
    Dongale TD, Mullani NB, Patil VB, Tikke RS, Pawar PS, Mohite SV, Teli AM, Bagade AA, Pawar KK, Khot KV, Shinde SS, Patil VL, Vanalkar SA, Moholkar AV, Bhosale PN, Patil PS, Kamat RK (2018) Mimicking the biological synapse functions of analog memory, synaptic weights, and forgetting with ZnO-based memristive devices. J Nanosci Nanotechnol 18:7758–7766.  https://doi.org/10.1166/jnn.2018.15540 CrossRefGoogle Scholar
  5. 5.
    Dongale TD, Desai ND, Khot KV, Volos CK, Bhosale PN, Kamat RK (2018) An electronic synapse device based on TiO2 thin film memristor. J Nanoelectron Optoelectron 13:68–75.  https://doi.org/10.1166/jno.2018.2297 CrossRefGoogle Scholar
  6. 6.
    Hadis NSM, Manaf AA, Herman SH (2013) Trends of deposition and patterning techniques of TiO2 for memristor based bio-sensing applications. Microsyst Technol 19:1889–1896.  https://doi.org/10.1007/s00542-013-1959-9 CrossRefGoogle Scholar
  7. 7.
    Guckert L, Swartzlander EE (2017) MAD gates—memristor logic design using driver circuitry. IEEE Trans Circuits Syst Express Briefs 64:171–175.  https://doi.org/10.1109/TCSII.2016.2551554 CrossRefGoogle Scholar
  8. 8.
    Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves CE, Li Z (2018) Analogue signal and image processing with large memristor crossbars. Nat Electron 1:52–59.  https://doi.org/10.1038/s41928-017-0002-z CrossRefGoogle Scholar
  9. 9.
    Chen M, Li M, Yu Q, Bao B, Xu Q, Wang J (2015) Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn 81:215–226.  https://doi.org/10.1007/s11071-015-1983-7 CrossRefGoogle Scholar
  10. 10.
    Gul F (2018) Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram Int 44:11417–11423.  https://doi.org/10.1016/j.ceramint.2018.03.198 CrossRefGoogle Scholar
  11. 11.
    Yesil A, Gül F. and Babacan Y, (2017) Emulator Circuits and Resistive Switching Parameters of Memristor. In: James A (ed) Memristor and Memristive Neural Networks, 1st edn. IntechOpen, London, pp. 41-61.  https://doi.org/10.5772/intechopen.71903 Google Scholar
  12. 12.
    Volkov AG, Tucket C, Reedus J, Volkova MI, Markin VS, Chua L (2014) Memristors in plants. Plant Signal Behav 9:28152.  https://doi.org/10.4161/psb.28152 CrossRefPubMedGoogle Scholar
  13. 13.
    Kosta SP, Kosta YP, Bhatele M, Dubey YM, Gaur A, Kosta S, Gupta J, Patel A, Patel B (2011) Human blood liquid memristor. Int J Med Eng Inf 3:16–29.  https://doi.org/10.1504/IJMEI.2011.039073 CrossRefGoogle Scholar
  14. 14.
    Dongale TD (2013) An elementary note on skin hydration measurement using memristive effect. Health Inf J 2:15–20.  https://doi.org/10.5121/hiij.2013.2102 CrossRefGoogle Scholar
  15. 15.
    Gurme ST, Dongale TD, Surwase SN, Kumbhar SD, More GM, Patil VL, Patil PS, Kamat RK, Jadhav JP (2018) An organic bipolar resistive switching memory device based on natural melanin synthesized from Aeromonas sp. SNS. Phys Status Solidi A 215:1800550.  https://doi.org/10.1002/pssa.201800550 CrossRefGoogle Scholar
  16. 16.
    Rananavare AP, Kadam SJ, Prabhu SV, Chavan SS, Anbhule PV, Dongale TD (2018) Organic non-volatile memory device based on cellulose fibers. Mater Lett 232:99–102.  https://doi.org/10.1016/j.matlet.2018.08.091 CrossRefGoogle Scholar
  17. 17.
    Sun B, Liang D, Li X, Chen P (2016) Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27:3957–3962.  https://doi.org/10.1007/s10854-015-4248-9 CrossRefGoogle Scholar
  18. 18.
    Koo HJ, So JH, Dickey MD, Velev OD (2011) Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv Mater 23:3559–3564.  https://doi.org/10.1002/adma.201101257 CrossRefPubMedGoogle Scholar
  19. 19.
    Sheng Q, Xie Y, Li J, Wang X, Xue J (2017) Transporting an ionic-liquid/water mixture in a conical nanochannel: a nanofluidic memristor. Chem Commun 53:6125–6127.  https://doi.org/10.1039/C7CC01047H CrossRefGoogle Scholar
  20. 20.
    Sun G, Slouka Z, Chang HC (2015) Fluidic-based ion memristors and ionic latches. Small 11:5206–5213.  https://doi.org/10.1002/smll.201501229 CrossRefPubMedGoogle Scholar
  21. 21.
    Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AICHE J 47:2384–2389.  https://doi.org/10.1002/aic.690471102 CrossRefGoogle Scholar
  22. 22.
    Marr PC, Marr AC (2016) Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 18:105–128.  https://doi.org/10.1039/C5GC02277K CrossRefGoogle Scholar
  23. 23.
    Bhunia P, Hwang E, Min M, Lee J, Seo S, Some S, Lee H (2012) A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem Commun 48:913–915.  https://doi.org/10.1039/C1CC16225J CrossRefGoogle Scholar
  24. 24.
    Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2010) Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc 132:6672–6678.  https://doi.org/10.1021/ja909110s CrossRefPubMedGoogle Scholar
  25. 25.
    Rajan K, Chiappone A, Perrone D, Bocchini S, Roppolo I, Bejtka K, Castellino M, Pirri CF, Ricciardi C, Chiolerio A (2016) Ionic liquid-enhanced soft resistive switching devices. RSC Adv 6:94128–94138.  https://doi.org/10.1039/C6RA18668H CrossRefGoogle Scholar
  26. 26.
    Dagade DH, Madkar KR, Shinde SP, Barge SS (2013) Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K. J Phys Chem B 117:1031–1043.  https://doi.org/10.1021/jp310924m CrossRefPubMedGoogle Scholar
  27. 27.
    Dagade DH, Shinde SP, Madkar KR, Barge SS (2014) Density and sound speed study of hydration of 1-butyl-3-methylimidazolium based amino acid ionic liquids in aqueous solutions. J Chem Thermodyn 79:192–204.  https://doi.org/10.1016/j.jct.2014.07.026 CrossRefGoogle Scholar
  28. 28.
    Shinde SP, Dagade DH (2015) Osmotic and activity coefficients for binary aqueous solutions of 1-butyl-3-methylimidazolium based amino acid ionic liquids at 298.15 K and at 0.1 MPa. J Chem Eng Data 60:635–642.  https://doi.org/10.1021/je500772z CrossRefGoogle Scholar
  29. 29.
    Shinde SP, Dagade DH (2018) Apparent and transfer molar volumes for aqueous solution containing polyethylene glycols and amino acid ionic liquids at 298.15 K. J Solut Chem 47:1060–1078.  https://doi.org/10.1007/s10953-018-0780-6 CrossRefGoogle Scholar
  30. 30.
    Dongle VS, Dongare AA, Mullani NB, Pawar PS, Patil PB, Heo J, Park TJ, Dongale TD (2018) Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J Mater Sci Mater Electron 29:18733–18741.  https://doi.org/10.1007/s10854-018-9997-9 CrossRefGoogle Scholar
  31. 31.
    Kamble GU, Shetake NP, Yadav SD, Teli AM, Patil DS, Pawar SA, Karanjkar MM, Patil PS, Shin JC, Orlowski MK, Kamat RK, Dongale TD (2018) Coexistence of filamentary and homogeneous resistive switching with memristive and meminductive memory effects in Al/MnO2/SS thin film metal–insulator–metal device. Int Nano Lett 8:263–275.  https://doi.org/10.1002/adma.201001872 CrossRefGoogle Scholar
  32. 32.
    Kosta SP, Dubey A, Gupta P, Nair P, Kosta S, Chaudhary JP, Patel B, Patel A, Vishwkarma A, Patel J, Mehta H (2013) First physical model of human tissue skin based memristors and their network. Int J Med Eng Inf 5:5–19.  https://doi.org/10.1504/IJMEI.2013.051661 CrossRefGoogle Scholar
  33. 33.
    Gale E, Adamatzky A, de Lacy Costello B (2015) Slime mould memristors. Bionanoscience 5:1–8.  https://doi.org/10.1007/s12668-014-0156-3 CrossRefGoogle Scholar
  34. 34.
    Hota MK, Bera MK, Kundu B, Kundu SC, Maiti CK (2012) A natural silk fibroin protein-based transparent bio-memristor. Adv Funct Mater 22:4493–4499.  https://doi.org/10.1002/adfm.201200073 CrossRefGoogle Scholar
  35. 35.
    Tan C, Liu Z, Huang W, Zhang H (2015) Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev 44:2615–2628.  https://doi.org/10.1039/C4CS00399C CrossRefPubMedGoogle Scholar
  36. 36.
    Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30:661–675.  https://doi.org/10.1088/0143-0807/30/4/001 CrossRefGoogle Scholar
  37. 37.
    Dongale TD, Mohite SV, Bagade AA, Kamat RK, Rajpure KY (2017) Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO3 memristor device. Microelectron Eng 183-184:12–18.  https://doi.org/10.1016/j.mee.2017.10.003 CrossRefGoogle Scholar
  38. 38.
    Kumar S, Strachan JP, Williams RS (2017) Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548:318–321.  https://doi.org/10.1038/nature23307 CrossRefPubMedGoogle Scholar
  39. 39.
    Liu W, Zhao T, Zhang Y, Wang H, Yu M (2006) The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4]. J Solut Chem 35:1337–1346.  https://doi.org/10.1007/s10953-006-9064-7 CrossRefGoogle Scholar
  40. 40.
    Dongale TD, Khot KV, Mohite SV, Desai NK, Shinde SS, Patil VL, Vanalkar SA, Moholkar AV, Rajpure KY, Bhosale PN, Patil PS, Gaikwad PK, Kamat RK (2017) Effect of write voltage and frequency on the reliability aspects of memristor-based RRAM. Int Nano Lett 7:209–216.  https://doi.org/10.1007/s40089-017-0217-z CrossRefGoogle Scholar
  41. 41.
    Gül F (2019) Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Phys 12:1091–1096.  https://doi.org/10.1016/j.rinp.2018.12.092 CrossRefGoogle Scholar
  42. 42.
    Gul F (2019) Circuit implementation of nano-scale TiO2 memristor using only metal-oxide-semiconductor (MOS) transistors. IEEE Electron Device Lett 40:643–646.  https://doi.org/10.1109/LED.2019.2899889 CrossRefGoogle Scholar
  43. 43.
    Babacan Y, Yesil A, Gul F (2018) The fabrication and MOSFET-only circuit implementation of semiconductor memristor. IEEE Trans Electron Devices 65:1625–1632.  https://doi.org/10.1109/TED.2018.2808530 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mahesh Y. Chougale
    • 1
  • Swapnil R. Patil
    • 1
  • Sandeep P. Shinde
    • 2
  • Sagar S. Khot
    • 1
  • Akshay A. Patil
    • 1
  • Atul C. Khot
    • 1
  • Sourabh S. Chougule
    • 1
  • Christos K. Volos
    • 3
  • Sungjun Kim
    • 4
    Email author
  • Tukaram D. Dongale
    • 1
    Email author
  1. 1.Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Department of ChemistryShivaji UniversityKolhapurIndia
  3. 3.Laboratory of Nonlinear Systems, Circuits & Complexity, Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  4. 4.School of Electronics EngineeringChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations