Advertisement

Ionics

, Volume 25, Issue 11, pp 5189–5199 | Cite as

Influence of Li2O–Y2O3–SiO2 glass additive on conductivity and stability of cubic Li7La3Zr2O12

  • E. A. Il’inaEmail author
  • K. V. Druzhinin
  • B. D. Antonov
  • A. A. Pankratov
  • E. G. Vovkotrub
Original Paper

Abstract

A series of the Li7La3Zr2O12x wt% 40.2Li2O·5.7Y2O3·54.1SiO2 composite electrolytes (x = 1–10) were obtained at 1150 °C for 1 h. According to X-ray diffraction and Raman spectroscopy, the obtained composites with x < 3 had no impurities. The glass additive was partially crystallized in the studied composites. A glass addition of 1 wt% leads to the conductivity growth from 1.5 × 10−4 to 2.8 × 10−4 S cm−1 at 25 °C. With further addition of the glass, the total conductivity of electrolyte decreased. The composite electrolytes with x = 1–3 have higher total conductivity values than the cubic Li7La3Zr2O12 at studied temperature range. It was determined that the glass addition into the cubic Li7La3Zr2O12 increased its stability in contact with air. The composite electrolyte with 1 wt% glass is stable versus metallic lithium at 200 °C. Thus, the new obtained composites can be used as solid electrolytes for high-energy power sources.

Keywords

Li7La3Zr2O12 Composite materials Lithium-ion conductivity Stability Electrochemical impedance spectroscopy 

Notes

Acknowledgments

This work was performed according to the budgetary plans of Institute of High Temperature Electrochemistry. The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High Temperature Electrochemistry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid-state batteries. J Power Sources 282:299–322.  https://doi.org/10.1016/j.jpowsour.2015.02.054 CrossRefGoogle Scholar
  2. 2.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686.  https://doi.org/10.1038/nmat3066 CrossRefPubMedGoogle Scholar
  3. 3.
    Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916.  https://doi.org/10.1016/j.ssi.2009.03.022 CrossRefGoogle Scholar
  4. 4.
    Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411.  https://doi.org/10.1016/j.pmatsci.2017.04.007 CrossRefGoogle Scholar
  5. 5.
    Kammampata SP, Thangadurai V (2018) Cruising in ceramics—discovering new structures for all-solid-state batteries—fundamentals, materials, and performances. Ionics 24:639–660.  https://doi.org/10.1007/s11581-017-2372-7 CrossRefGoogle Scholar
  6. 6.
    Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98:3603–3623.  https://doi.org/10.1111/jace.13844 CrossRefGoogle Scholar
  7. 7.
    Liu Q, Geng Z, Han C, Fu Y, Li S, He YB, Kang F, Li B (2018) Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources 389:120–134.  https://doi.org/10.1016/j.jpowsour.2018.04.019 CrossRefGoogle Scholar
  8. 8.
    Zheng F, Kotobuki M, Song S, Lai MO, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213.  https://doi.org/10.1016/j.jpowsour.2018.04.022 CrossRefGoogle Scholar
  9. 9.
    Takada K (2018) Progress in solid electrolytes toward realizing solid-state lithium batteries. J Power Sources 394:74–85.  https://doi.org/10.1016/j.jpowsour.2018.05.003 CrossRefGoogle Scholar
  10. 10.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781.  https://doi.org/10.1002/anie.200701144 CrossRefGoogle Scholar
  11. 11.
    Yang T, Li Y, Wu W, Cao Z, He W, Gao Y, Liu J, Li G (2018) The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceram Int 44:1538–1544.  https://doi.org/10.1016/j.ceramint.2017.10.072 CrossRefGoogle Scholar
  12. 12.
    Murugan R, Ramakumar S, Janani N (2011) High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem Commun 13:1373–1375.  https://doi.org/10.1016/j.elecom.2011.08.014 CrossRefGoogle Scholar
  13. 13.
    Cao Z, Cao X, Liu X, He W (2015) Effect of Sb-Ba codoping on the ionic conductivity of Li7La3Zr2O12 ceramic. Ceram Int 41:6232–6236.  https://doi.org/10.1016/j.ceramint.2015.01.030 CrossRefGoogle Scholar
  14. 14.
    Jiang Y, Zhu X, Qin S, Ling M, Zhu J (2017) Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics 300:73–77.  https://doi.org/10.1016/j.ssi.2016.12.005 CrossRefGoogle Scholar
  15. 15.
    Hu S, Li YF, Yang R, Yang Z, Wang L (2018) Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram Int 44:6614–6618.  https://doi.org/10.1016/j.ceramint.2018.01.065 CrossRefGoogle Scholar
  16. 16.
    Gai J, Zhao E, Ma F, Sun D, Ma X (2018) Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J Eur Ceram Soc 38:1673–1678.  https://doi.org/10.1016/j.jeurceramsoc.2017.12.002 CrossRefGoogle Scholar
  17. 17.
    Chen X, Cao T, Xue M, Lv H, Li B, Zhang C (2018) Improved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method. Solid State Ionics 314:92–97.  https://doi.org/10.1016/j.ssi.2017.11.027 CrossRefGoogle Scholar
  18. 18.
    Shao C, Yu Z, Liu H, Zheng Z, Sun N, Diao C (2017) Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim Acta 225:345–349.  https://doi.org/10.1016/j.electacta.2016.12.140 CrossRefGoogle Scholar
  19. 19.
    Liu X, Li Y, Yang T, Cao Z, He W, Gao Y, Liu J, Li G, Li Z (2017) High lithium ionic conductivity in the garnet-type oxide Li7−2xLa3Zr2−xMoxO12 (x=0-0.3) ceramics by sol-gel method. J Am Ceram Soc 100:1527–1533.  https://doi.org/10.1111/jace.14736 CrossRefGoogle Scholar
  20. 20.
    Janani N, Deviannapoorani C (2014) Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv 4:51228–51238.  https://doi.org/10.1039/C4RA08674K CrossRefGoogle Scholar
  21. 21.
    Tadanaga K, Takano R, Ichinose T, Mori S (2013) Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochem Commun 33:51–54.  https://doi.org/10.1016/j.elecom.2013.04.004 CrossRefGoogle Scholar
  22. 22.
    Takano R, Tadanaga K, Hayashi A, Tatsumisago M (2014) Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process. Solid State Ionics 255:104–107.  https://doi.org/10.1016/j.ssi.2013.12.006 CrossRefGoogle Scholar
  23. 23.
    Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K (2016) Preparation of Li7La3(Zr2−x, Nbx)O12 (x= 0–1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol-gel process. Solid State Ionics 285:6–12.  https://doi.org/10.1016/j.ssi.2015.06.015 CrossRefGoogle Scholar
  24. 24.
    Rosero-Navarro NC, Miura A, Higuchi M, Tadanaga K (2017) Optimization of Al2O3 and Li3BO3 content as sintering additives of Li7−xLa2.95Ca0.05ZrTaO12 at low temperature. J Electron Mater 46:497–501.  https://doi.org/10.1007/s11664-016-4924-4 CrossRefGoogle Scholar
  25. 25.
    Yang C, Yi-Qiu L, Xiang-Xin G (2013) Densification and lithium ion conductivity of garnet-type Li7-хLa3Zr2-хTaхO12 (x = 0.25) solid electrolytes. Chin Phys B 22:0782011–0782015Google Scholar
  26. 26.
    Pershina SV, Il’ina EA, Reznitskikh OG (2017) Phase composition, density and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition. Inorg Chem 56:9880–9891.  https://doi.org/10.1021/acs.inorgchem.7b01379 CrossRefPubMedGoogle Scholar
  27. 27.
    Shin RH, Son S, Han YS, Kim YD, Kim HT et al (2017) Sintering behavior of garnet-type Li7La3Zr2O12–Li3BO3 composite solid electrolytes for all-solid-state lithium batteries. Solid State Ionics 301:10–14.  https://doi.org/10.1016/j.ssi.2017.01.005 CrossRefGoogle Scholar
  28. 28.
    Jonson RA, McGinn PJ (2018) Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12 with Li3BO3 additions. Solid State Ionics 323:49–55.  https://doi.org/10.1016/j.ssi.2018.05.015 CrossRefGoogle Scholar
  29. 29.
    Tang Y, Zhang Q, Luo Z, Liu P, Lu A (2017) Effects of Li2O-Al2O3-SiO2 system glass on the microstructure and ionic conductivity of Li7La3Zr2O12 solid electrolyte. Mater Lett 193:251–254.  https://doi.org/10.1016/j.matlet.2017.01.134 CrossRefGoogle Scholar
  30. 30.
    Il’ina EA, Pershina SV, Antonov BD, Pankratov AA, Vovkotrub EG (2018) The influence of the glass additive Li2O-B2O3-SiO2 on the phase composition, conductivity, and microstructure of the Li7La3Zr2O12. J Alloys Compd 765:841–847.  https://doi.org/10.1016/j.jallcom.2018.06.154 CrossRefGoogle Scholar
  31. 31.
    Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K, Stevenson JW (2017) Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte. J Am Ceram Soc 100:276–285.  https://doi.org/10.1111/jace.14572 CrossRefGoogle Scholar
  32. 32.
    Duan H, Zheng H, Zhou Y, Xu B, Liu H (2018) Stability of garnet-type Li ion conductors: an overview. Solid State Ionics 318:45–53.  https://doi.org/10.1016/j.ssi.2017.09.018 CrossRefGoogle Scholar
  33. 33.
    Xu B, Li W, Duan H, Wang H, Guo Y (2017) Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J Power Sources 354:68–73.  https://doi.org/10.1016/j.jpowsour.2017.04.026 CrossRefGoogle Scholar
  34. 34.
    Hofstetter K, Samson AJ, Narayanan S, Thangadurai V (2018) Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J Power Sources 390:297–312.  https://doi.org/10.1016/j.jpowsour.2018.04.016 CrossRefGoogle Scholar
  35. 35.
    Li YT, Xu BY, Xu HH, Duan HN, Lu XJ, Xin S, Zhou WD, Xue LG, Fu GT, Manthiram A, Goodenough JB (2017) Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed 56:753–756.  https://doi.org/10.1002/anie.201608924 CrossRefGoogle Scholar
  36. 36.
    Zhang LC, Yang JF, Gao YX, Wang XP, Fang QF, Chen CH (2017) Influence of Li3BO3 additives on the Li+ conductivity and stability of Ca/Ta-substituted Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 electrolytes. J Power Sources 355:69–73.  https://doi.org/10.1016/j.jpowsour.2017.04.044 CrossRefGoogle Scholar
  37. 37.
    Alexander MG, Riley B (1986) Ion conducting glasses in the Na2O-Y2O3-SiO2 and Li2O-Y2O3-SiO2 systems. Solid State Ionics 19:478–482.  https://doi.org/10.1016/0167-2738(86)90163-3 CrossRefGoogle Scholar
  38. 38.
    Il’ina EA, Raskovalov AA, Antonov BD, Pankratov AA, Reznitskikh OG (2017) Composite electrolytes ceramic Li7La3Zr2O12 / glassy Li2O–Y2O3–SiO2. Mater Res Bull 93:157–161.  https://doi.org/10.1016/j.materresbull.2017.04.050 CrossRefGoogle Scholar
  39. 39.
    Il’ina EA, Raskovalov AA, Shevelin PY, Voronin VI, Berger IF, Zhyravlev NA (2014) Lithium stoichiometry of solid electrolytes based on tetragonal Li7La3Zr2O12. Mater Res Bull 53:32–37.  https://doi.org/10.1016/j.materresbull.2014.01.041 CrossRefGoogle Scholar
  40. 40.
    Larraz G, Orera A, Sanjúan ML (2013) Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J Mater Chem A 1:11419–11428.  https://doi.org/10.1039/C3TA11996C CrossRefGoogle Scholar
  41. 41.
    Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, Sakamoto J (2014) Tetragonal vs. cubic phase stability in Al–free Ta doped Li7La3Zr2O12 (LLZO). J Mater Chem A 2:13431–13436.  https://doi.org/10.1039/C4TA02099E CrossRefGoogle Scholar
  42. 42.
    Kong L, Karatchevtseva I, Gregg DJ, Blackford MG, Holmes R, Triani G (2013) Direct preparation of La2Zr2O7 microspheres by cathode plasma electrolysis. J Am Ceram Soc 96:935–941.  https://doi.org/10.1016/j.jcis.2016.04.016 CrossRefGoogle Scholar
  43. 43.
    Kruger H, Kahlenberg V, Kaindl R (2007) Li2Si3O7: crystal structure and Raman spectroscopy. J Solid State Chem 180:922–928.  https://doi.org/10.1016/j.jssc.2006.12.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • E. A. Il’ina
    • 1
    Email author
  • K. V. Druzhinin
    • 1
    • 2
  • B. D. Antonov
    • 1
  • A. A. Pankratov
    • 1
  • E. G. Vovkotrub
    • 1
  1. 1.Institute of High-Temperature Electrochemistry of Ural Branch of RASYekaterinburgRussia
  2. 2.Ural Federal University named after the first President of Russia B.N.YeltsinYekaterinburgRussia

Personalised recommendations