, Volume 25, Issue 11, pp 5495–5500 | Cite as

Ionic liquids as beneficial medium for electrochemically induced transformation and functionalization of white phosphorus

  • Tatyana V. GryaznovaEmail author
  • Elizaveta O. Nikanshina
  • Mikhail N. Khrizanforov
  • Yulia H. Budnikova
Original Paper


Unusual application of ionic liquids as the promoter for selective white phosphorus tetrahedron opening and reagent in the electrochemical reaction was described. New single-stage electrochemical synthesis of esters of phosphoric acids from white phosphorus in the presence of ionic liquid in alcohol medium has been proposed in mild conditions. One hundred percent conversion of P4 to soluble organophosphorus derivatives was observed. Ionic liquid promotes the opening of a tetrahedron of white phosphorus, acting as an electrophilic reaction component, as well as an electrolyte and a reagent. The dialkylimidazole diethylphosphonate with C–P bond, difficult of access by other approaches, was prepared with good yields.

Graphical abstract


Ionic liquid Electrochemical reduction White phosphorus Esters of phosphoric acids Phosphonates 



The authors gratefully acknowledge the CSF-SAC FRC KSC RAS for the registration of spectra (NMR, IR, etc.).


  1. 1.
    Fuchigami T, Atobe M, Inagi S (2014) Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. Wiley, Hoboken 238 pp. Google Scholar
  2. 2.
    Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR (2018) Electrifying organic synthesis. Angew Chem Int Ed 57:5594–5619. CrossRefGoogle Scholar
  3. 3.
    Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR (2018) Modern electrochemical aspects for the synthesis of value-added organic products. Angew Chem Int Ed 57:6018–6041. CrossRefGoogle Scholar
  4. 4.
    Kärkäs MD (2018) Electrochemical strategies for C–H functionalization and C–N bond formation. Chem Soc Rev 47:5786–5865. CrossRefPubMedGoogle Scholar
  5. 5.
    Horn EJ, Rosen BR, Baran PS (2016) Synthetic organic electrochemistry: an enabling and innately sustainable method. ACS Cent Sci 2(5):302–308. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yan M, Kawamata Y, Baran PS (2017) Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev 117(21):13230–13319. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Khrizanforova VV, Kholin KV, Khrizanforov MN, Kadirov MK, Budnikova YH (2018) Electrooxidative CH/PH functionalization as a novel way to synthesize benzo [b] phosphole oxides mediated by catalytic amounts of silver acetate. New J Chemistry 42(2):930–935. CrossRefGoogle Scholar
  8. 8.
    Khrizanforov MN, Fedorenko SV, Mustafina AR, Kholin KV, Nizameev IR, Strekalova SO, Grinenko VV, Gryaznova TV, Zairov RR, Mazzaro R, Morandi V, Vomiero A, Budnikova YH (2018) Silica-supported silver nanoparticles as an efficient catalyst for aromatic C-H alkylation and fluoroalkylation. Dalton Trans 47:9608–9616.;47(29):9608-16. CrossRefPubMedGoogle Scholar
  9. 9.
    Khrizanforov M, Strekalova S, Khrizanforova V, Dobrynin A, Kholin K, Gryaznova T, Grinenko V, Gubaidullin A, Kadirov MK, Budnikova Y (2018) Cobalt-catalyzed green cross-dehydrogenative C(sp2)-H/P-H coupling reactions. Top Catal 61(18–19):1949–1956. CrossRefGoogle Scholar
  10. 10.
    Yurko EO, Gryaznova TV, Kholin KV, Khrizanforova VV, Budnikova YH (2018) External oxidant-free cross-coupling: electrochemically induced aromatic C-H phosphonation of azoles with dialkyl-H-phosphonates under silver catalysis. Dalton Trans 47:190–196. CrossRefGoogle Scholar
  11. 11.
    Grayaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova YН (2015) Pyridine-directed palladium-catalyzed electrochemical phosphonation of C(sp2)-H bond. J.Organomet. Chem. 785:68–71. CrossRefGoogle Scholar
  12. 12.
    Dudkina YB, Mikhaylov DY, Gryaznova TV, Tufatullin AI, Kataeva ON, Vicic DA, Budnikova YH (2013) Electrochemical ortho functionalization of 2-phenylpyridine with perfluorocarboxylic acids catalyzed by palladium in higher oxidation states. Organometallics 32:4785–4792. CrossRefGoogle Scholar
  13. 13.
    Lunagariya J, Dharband A, Vekariya RL (2017) Efficient esterification of n-butanol with acetic acid catalyzed by the Bronsted acidic ionic liquids: influence of acidity. RSC Adv 7:5412–5420. CrossRefGoogle Scholar
  14. 14.
    Vekariya RL, Kumar NS (2017) Micellization behaviour of surface active N-alkyl pyridinium dodecylsulphate task-specific ionic liquids in aqueous solutions. Colloids and Surfaces A 529:203–209. CrossRefGoogle Scholar
  15. 15.
    Vekariya RL, Dhar A, Lunagariya J (2017) Synthesis and characterization of double –so3h functionalized Brönsted acidic hydrogen sulfate ionic liquid confined with silica through sol-gel method. Composite Interfaces 24(8):801–816. CrossRefGoogle Scholar
  16. 16.
    Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformation. J Mol Liq 227:44–60. CrossRefGoogle Scholar
  17. 17.
    Khrizanforov MN, Arkhipova DM, Shekurov RP, Gerasimova TP, Ermolaev VV, Islamov DR, Miluykov VA, Kataeva ON, Khrizanforova VV, Sinyashin OG, Budnikova YH (2015) Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J Solid State Electrochem 19:2883–2890. CrossRefGoogle Scholar
  18. 18.
    Ermolaev V, Gerasimova T, Kadyrgulova L, Shekurov R, Dolengovski E, Kononov A, Miluykov V, Sinyashin O, Katsyuba S, Budnikova Y, Khrizanforov M (2018) Ferrocene-containing sterically hindered phosphonium salts. Molecules 23(11):2773. CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shvedene NV, Chernyshov DV, Pletnev IV (2008) Ionic liquids in electrochemical sensors. Russ J General Chem 78:2507–2520. CrossRefGoogle Scholar
  20. 20.
    Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chem Phys Chem 5:1106–1120. CrossRefPubMedGoogle Scholar
  21. 21.
    Lebedeva OK, Kul’tin DYu, Kustov LM, Dunaev SF (2004) Ionic liquids in electrochemical processes. Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal) 48:59–73Google Scholar
  22. 22.
    Milyukov VA, Budnikova YH, Sinyashin OG (2005) Organic chemistry of elemental phosphorus. Russ Chem Rev 74:781–805. CrossRefGoogle Scholar
  23. 23.
    Budnikova YH, Gryaznova TV, Grinenko VV, Dudkina YB, Khrizanforov MN (2017) Eco-efficient electrocatalytic C-P bond formation. Pure Appl Chem 89:311–330. CrossRefGoogle Scholar
  24. 24.
    Budnikova YH, Yakhvarov D, Sinyashin OG (2005) Electrocatalytic eco-efficient functionalization of white phosphorus. J Organomet Chem 690:2416–2425. CrossRefGoogle Scholar
  25. 25.
    Peruzzini M, Abdreimova RR, Budnikova Y, Romerosa A, Scherer OJ, Sitzman H (2004) Functionalization of white phosphorus in the coordination sphere of transition metal complexes. JOrganomet Chem 689(24):4319–4331. CrossRefGoogle Scholar
  26. 26.
    Budnikova YH (2019) Opportunities and challenges for combining electro- and organometallic catalysis in C(sp2)-H phosphonation. Pure Appl Chem 91:17–31. CrossRefGoogle Scholar
  27. 27.
    Budnikova YH, Yakhvarov DG, Kargin YM (1997) Arylation and alkylation of white phosphorus under the action of electrochemically generated Ni(0) complexes. Mendeleev Commun 7:67–68. CrossRefGoogle Scholar
  28. 28.
    Budnikova YG, Tazeev DI, Gryaznova TV, Sinyashin OG (2006) Novel high-efficiency ecologically safe electrocatalytic techniques for preparing organophosphorus compounds. Russ J Electrochem 42:1127–1133. CrossRefGoogle Scholar
  29. 29.
    Kargin YM, Budnikova YG (2001) Electrochemistry of organophosphorus compounds. Russ J Gen Chem 71:1393–1421. CrossRefGoogle Scholar
  30. 30.
    Kargin YM, Budnikova YH, Martynov BI, Turygin VV, Tomilov AP (2001) Electrochemical synthesis of organophosphorus compounds with p-o, p-n and p-c bonds from white phosphorus. J Electroanal Chem 507:157–169. CrossRefGoogle Scholar
  31. 31.
    Budnikova YH, Kargin YM, Sinyashin OG (1999) Electrosynthesis from white phosphorus in alcohol-water solutions. Phosphorus and Sulfur 144-146:565–568. CrossRefGoogle Scholar
  32. 32.
    Budnikova YH, Kafiyatullina AG, Sinyashin OG, Abdreimova RR (2003) Electrochemical synthesis of phosphorus esters from white phosphorus in the presence of copper complexes and ethanol. Russ Chem Bull 52:929–938. CrossRefGoogle Scholar
  33. 33.
    Chruścinski L, Młynarz P, Malinowska K, Ochocki J, Boduszek B, Kozłowski H (2000) Methylphosphonate, hydroxymethylphosphonate and aminomethylphosphonate ligands containing pyridine, pyrazole or imidazole side chains: the coordination abilities towards Cu(II) ions. Inorg Chim Acta 303:47–53 CrossRefGoogle Scholar
  34. 34.
    Terinek M, Vasella A (2004) Improved access to imidazole-phosphonic acids: synthesis of D-manno-Tetrahydroimidazopyridine-2-phosphonates. Helvetica Chimica Acta 87:719–734. CrossRefGoogle Scholar
  35. 35.
    Suarez PAZ, Selbach VM, Dullius JEL, Einloft S, Piatnicki CMS, Azambuja DS, De Souza RF, Dupont J (1997) Enlarged electrochemical window in dialkyl-imidazolium cation based room-temperature air and water-stable molten salts. Electrochim Acta 42(16):2533–2535. CrossRefGoogle Scholar
  36. 36.
    Krasnov S, Budnikova Y. Developments in electrochemistry. Chapter: electro-chemical transformation of white phosphorus as a way to compounds with phosphorus-hydrogen and phosphorus-carbon bonds. Ed: Jang H. Chun, Ph.D. Kwangwoon University, Seoul. 2012. DOI:
  37. 37.
    Corbridge DE (2016) Phosphorus: chemistry, biochemistry and technology. CRC press, Boca Raton, p 1473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tatyana V. Gryaznova
    • 1
    Email author
  • Elizaveta O. Nikanshina
    • 1
  • Mikhail N. Khrizanforov
    • 1
  • Yulia H. Budnikova
    • 1
  1. 1.FRC Kazan Scientific Center of RASArbuzov Institute of Organic and Physical ChemistryKazanRussian Federation

Personalised recommendations