, Volume 25, Issue 11, pp 5305–5313 | Cite as

Electrospun 3D CNF–SiO2 fabricated using non-biodegradable silica gel as prospective anode for lithium–ion batteries

  • Anbu Dinesh Jayabalan
  • Mir Mehraj Ud Din
  • M. S. Indu
  • K. Karthik
  • Veena Ragupathi
  • Ganapathi Subramaniam Nagarajan
  • Puspamitra Panigrahi
  • Ramaswamy MuruganEmail author
Original Paper


An eco-friendly simple, cost-effective, and recyclable strategy was approached to fabricate high-capacity anode for lithium–ion batteries (LIBs). A non-biodegradable solid waste obtained from the used silica gel pack was pulverised and used directly as a source of silicon dioxide nanoparticles. The SiO2-incorporated carbon nanofiber (CNF–SiO2) composite was prepared via the electrospinning technique. LIB constructed with CNF–SiO2 nanocomposite electrode delivered enhanced initial discharge capacity of 900 mA h g−1 and a remarkable discharge capacity of 1000 mA h g−1 after 300 cycles of charge and discharge at a cycling rate of 0.1 C (current density ≈ 0.19 A g−1). The CNF–SiO2 electrode exhibited reduced charge transfer resistance and a higher rate capability at various cycling rates with highest reversible discharge capacity of nearly 975 mA h g−1 at 0.2 C. The excellent rate capability of CNF–SiO2 composite electrode obtained from non-indicative desiccant followed by electrospinning with improved charge discharge capacity demonstrates its potential application in LIBs.

Graphical abstract

Electrospun CNF-SiO2 nanocomposite anode fabrication and its electrochemical performance.


Silica gel pack SiO2 nanoparticles CNF–SiO2 electrode High discharge capacity High-performance Li–ion battery 



RM acknowledges support from the SERB, Govt. of India (EMR/2017/000417). MMU Din thanks UGC-MANF Govt. of India for the fellowship support.

Author contributions

RM and PP proposed the research work. ADJ carried out the experimental work, materials characterization, data analysis and manuscript preparation. MMU Din, IMS and KK assisted in carrying out the experimental work. VR and GSN supported the research work. Major work was carried out in the High Energy Density Batteries Research Laboratory, Pondicherry University under the supervision of RM.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

11581_2019_3066_MOESM1_ESM.doc (3.8 mb)
ESM 1 (DOC 3918 kb)


  1. 1.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Li–ion battery materials: present and future. Mater Today 18:252–264Google Scholar
  2. 2.
    Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium–ion batteries. Adv Mater 30:1800561Google Scholar
  3. 3.
    Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Engg 3:385–418Google Scholar
  4. 4.
    Lv P, Zhao H, Wang J, Liu X, Zhang T, Xia Q (2013) Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries. J Power Sources 237:291–294Google Scholar
  5. 5.
    Xu Y, Zhu Y, Han F, Luo C, Wang C (2015) 3D Si/C fiber paper electrodes using a combined electrospray/electrospinning technique for Li–ion batteries. Adv Energy Mater 5:1400753Google Scholar
  6. 6.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High–performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35PubMedGoogle Scholar
  7. 7.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano–and bulk–silicon–based insertion anodes for lithium–ion secondary cells. J Power Sources 163:1003–1039Google Scholar
  8. 8.
    Song K, Yoo S, Kang K, Heo H, Kang YM, Jo MH (2013) Hierarchical SiOx nanoconifers for Li–ion battery anodes with structural stability and kinetic enhancemen. J Power Sources 229:229–233Google Scholar
  9. 9.
    Cho J (2010) Porous Si anode materials for lithium rechargeable batteries. J Mater Chem 20:4009–4014Google Scholar
  10. 10.
    Feng Y, Liu X, Liu L, Zhang Z, Teng Y, Yu D, Sui J, Wang X (2018) SiO2 /C composite derived from rice husks with enhanced capacity as anodes for lithium–ion batteries. Chem Select 3:10338–10344Google Scholar
  11. 11.
    Ding K, Shi X, Li C, Gao X, Han J, Wang H, Dou H, Pan J (2018) Study on the combustion products of dimethyl silicone oil as anode materials for lithium ion batteries. Int J Electrochem Sci 13:10859–10872Google Scholar
  12. 12.
    Yang X, Huang H, Li Z, Zhong M, Zhang G, Wu D (2014) Preparation and lithium–storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure. Carbon 77:275–280Google Scholar
  13. 13.
    Li M, Li J, Li K, Zhao Y, Zhang Y, Gosselink D, Chen P (2013) SiO2/Cu/polyacrylonitrile–C composite as anode material in lithium ion batteries. J Power Sources 240:659–666Google Scholar
  14. 14.
    Yang Y, Gao Y, Liu J, Fang X (2017) Hydrothermal synthesis and electrochemical performance of amorphous SiO2 nanospheres/graphene composites. Mater Sci Appl 8:959–965Google Scholar
  15. 15.
    Gu Z, Xia X, Liu C, Hu X, Chen Y, Wang Z, Liu H (2018) Yolk structure of porous c/ SiO2 /C composites as anode for lithium-ion batteries with quickly activated SiO2. J Alloys Compd 757:265–272Google Scholar
  16. 16.
    Li HH, Wu XL, Sun HZ, Wang K, Fan CY, Zhang LL, Yang FM, Zhang JP (2015) Dual–porosity SiO2/C nanocomposite with enhanced lithium storage performance. J Phys Chem C 119:3495–3501Google Scholar
  17. 17.
    Lee JI, Ko Y, Shin M, Song HK, Choi NS, Kim MG, Park S (2015) High–performance silicon–based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy Environ Sci 8:2075–2084Google Scholar
  18. 18.
    Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor MJ, Zhang JG, Liu J (2014) Mesoporous silicon sponge as an anti–pulverization structure for high–performance lithium–ion battery anodes. Nat Commun 5:4105PubMedGoogle Scholar
  19. 19.
    Zhao Y, Liu Z, Zhang Y, Mentbayeva A, Wang X, Maximov MY, Liu B, Bakenov Z, Yin F (2017) Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for Li-ion batteries. Nanoscale Res Lett 12:459PubMedPubMedCentralGoogle Scholar
  20. 20.
    Xia H, Yin Z, Zheng F, Zhang Y (2017) Facile synthesis of SiO2 /C composites as anode materials for lithium-ion batteries. Mater Lett 205:83–86Google Scholar
  21. 21.
    Hao S, Wang Z, Chen L (2016) Amorphous SiO2 in tunnel–structured mesoporous carbon and its anode performance in li–ion batteries. Mater Des 111:616–621Google Scholar
  22. 22.
    Yao Y, Zhang J, Xue L, Huang T, Yu A (2011) Carbon–coated SiO2 nanoparticles as anode material for lithium ion batteries. J Power Sources 196:10240–10243Google Scholar
  23. 23.
    Ren YR, Yang B, Wei H, Ding J (2016) Electrospun SiO2/C composite fibers as durable anode materials for lithium ion batteries. Solid State Ionics 292:27–31Google Scholar
  24. 24.
    Zhang L, Shen K, He W, Liu Y, Guo S (2017) SiO2 @ graphite composite generated from sewage sludge as anode material for lithium ion batteries. Int J Electrochem Sci 12:10221–10229Google Scholar
  25. 25.
    Chang WS, Park CM, Kim JH, Kim YU, Jeong G, Sohn HJ (2012) Quartz (SiO2 ): a new energy storage anode material for li-ion batteries. Energy Environ Sci 5:6895–6899Google Scholar
  26. 26.
    Prasath A, Elumalai P (2016) Extraction of nanostructured SiO2 from glass waste: a potential anode source for lithium–ion batteries. ChemSelect 1:3363–3366Google Scholar
  27. 27.
    Guo H, Mao R, Yang X, Chen J (2012) Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta 74:271–274Google Scholar
  28. 28.
    Wu W, Shi J, Liang Y, Liu F, Peng Y, Yang H (2015) A low-cost and advanced SiOx–C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys Chem Chem Phys 17:13451–13456PubMedGoogle Scholar
  29. 29.
    Ren Y, Wei H, Huang X, Ding J (2014) A facile synthesis of SiO2@C@ graphene composites as anode material for lithium ion batteries. Int J Electrochem Sci 9:7784–7794Google Scholar
  30. 30.
    Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high–performance anodes for lithium–ion batteries. Sci Rep 3:1568PubMedPubMedCentralGoogle Scholar
  31. 31.
    Li M, Zeng Y, Ren Y, Zeng C, Gu J, Feng X, He H (2015) Fabrication and lithium storage performance of sugar apple–shaped SiOx@C nanocomposite spheres. J Power Sources 288:53–61Google Scholar
  32. 32.
    Zeng L, Liu R, Han L, Luo F, Chen X, Wang J, Wei M (2018) Preparation of a Si/SiO2–ordered mesoporous–carbon nanocomposite as an anode for high–performance lithium–ion and sodium–ion batteries. Chem Eur J 24:4841–4848PubMedGoogle Scholar
  33. 33.
    Cui J, Cheng F, Lin J, Yang J, Jiang K, Wen Z, Sun J (2017) High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technol 311:1–8Google Scholar
  34. 34.
    Ding K, Shi X, Wang H, Li C, Wang W, Dou H, Pan J (2018) The calcined soils can be used as anode materials for lithium ion batteries. Int J Electrochem Sci 13:4967–4980Google Scholar
  35. 35.
    Wang Y, Zhou L, Liang C, Zhang J, Huang H, Gan Y, Zhang W (2019) Sand/carbon composites as low–cost lithium storage materials with superior electrochemical performance. New J Chem 43:4123–4129Google Scholar
  36. 36.
    Tang K, White RJ, Mu X, Titirici MM, Van Aken PA, Maier J (2012) Hollow carbon nanospheres with a high rate capability for lithium–based batteries. Chem Sus Chem 5:400–403Google Scholar
  37. 37.
    Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L (2008) Electrochemical reduction of nano–SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem Commun 10:1876–1878Google Scholar
  38. 38.
    Sasidharan M, Liu D, Gunawardhana N, Yoshio M, Nakashima K (2011) Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres. J Mater Chem 21:13881–13888Google Scholar
  39. 39.
    Pereira-Nabais C, Światowska J, Chagnes A, Ozanam F, Gohier A, Tran–Van P, Marcus P (2013) Interphase chemistry of Si electrodes used as anodes in Li–ion batteries. Appl Surf Sci 266:5–16Google Scholar
  40. 40.
    Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842Google Scholar
  41. 41.
    Veith GM, Doucet M, Baldwin JK, Sacci RL, Fears TM, Wang Y, Browning JF (2015) Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode. J Phys Chem C 119:20339–20349Google Scholar
  42. 42.
    Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412Google Scholar
  43. 43.
    Moon S, Yun J, Lee JY, Park G, Kim SS, Lee KJ (2019) Mass–production of electrospun carbon nanofiber containing SiOx for lithium–ion batteries with enhanced capacity. Macromol Mater Eng 304:1800564. Google Scholar
  44. 44.
    Liu X, Chen Y, Liu H, Liu ZQ (2017) SiO2@C hollow sphere anodes for lithium-ion batteries. J Mater Sci Technol 33:239–245Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anbu Dinesh Jayabalan
    • 1
  • Mir Mehraj Ud Din
    • 2
  • M. S. Indu
    • 2
  • K. Karthik
    • 2
  • Veena Ragupathi
    • 1
  • Ganapathi Subramaniam Nagarajan
    • 1
  • Puspamitra Panigrahi
    • 1
  • Ramaswamy Murugan
    • 2
    Email author
  1. 1.Centre for Clean Energy and Nano Convergence (CENCON)Hindustan Institute of Technology and Science (Deemed to be University)ChennaiIndia
  2. 2.High Energy Density Batteries Research Laboratory, Department of PhysicsPondicherry UniversityPuducherryIndia

Personalised recommendations