, Volume 25, Issue 11, pp 5429–5443 | Cite as

Controlling synthesis of nitrogen-doped hierarchical porous graphene-like carbon with coral flower structure for high-performance supercapacitors

  • Wenlian Chen
  • Zhongai HuEmail author
  • Yuying Yang
  • Xiaotong Wang
  • Yuanyuan He
  • Yandong Xie
  • Cuiming Zhu
  • Yan Zhang
  • Liwen Lv
Original Paper


In this work, nitrogen-doped hierarchical porous graphene-like carbon (NCFC) with coral flower structure is synthesized by an eco-friendly and inexpensive template carbonization method, with cellulose acetate (CA) as carbon precursor, MgO as template, and urea as nitrogen agent. The as-synthesized NCFC features loose coral flower composed of ultra-thin graphene-like sheets and has a high specific surface area of 937 m2 g−1. As the electrode material for supercapacitors, the NCFC shows a high capacitance of 333 F g−1 at 1 A g−1 in 1 mol L−1 H2SO4 electrolyte and a good rate performance (the specific capacitance at 10 A g−1 retains 84% relative to 1 A g−1), and excellent cycle stability with 100% capacitance retention after 10,000 cycles. The symmetric supercapacitor (SSC) was assembled by using NCFC in 1 mol L−1 H2SO4 electrolyte. The device exhibits the maximum energy density of 21 W h kg−1 at a power density of 750 W kg−1 in a potential window of 0 to 1.4 V. Our work is expected to pave a new way for scale-up production of high-performance graphene-like carbon from natural cellulose with a simple, eco-friendly, and low-cost method.


Cellulose acetate MgO Template Supercapacitors 


Funding information

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (21773187, 21563027, 21163017, and 20963009)

Supplementary material

11581_2019_3062_MOESM1_ESM.docx (483 kb)
ESM 1 (DOCX 483 kb)


  1. 1.
    Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C (2013) Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J Mater Chem A1:6037–6042. CrossRefGoogle Scholar
  2. 2.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2015) Carbon materials for chemical capacitive energy storage. Cheminform. 43:4828–4850. CrossRefGoogle Scholar
  3. 3.
    Qian WJ, Sun FX et al (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386. CrossRefGoogle Scholar
  4. 4.
    Liang YR, Liang FX, Zhong H et al (2013) An advanced carbonaceous porous network for high-performance organic electrolyte supercapacitors. J Mater Chem A1:6971–7278. CrossRefGoogle Scholar
  5. 5.
    Wang Z, Zhou M et al (2014) Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors. Chem Asian J 9:2653–3010. CrossRefGoogle Scholar
  6. 6.
    Zhai YP, Dou YQ, Zhao DY et al (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850. CrossRefPubMedGoogle Scholar
  7. 7.
    Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, Li HM, Jiang L, Lu YF (2013) Chemical activation of carbon nano-onions for high rate supercapacitors electrodes. Carbon 51:52–58. CrossRefGoogle Scholar
  8. 8.
    Qie L, Chen W, Xu H, Xiong X-Q, Jiang Y, Zou F et al (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2245–2250. CrossRefGoogle Scholar
  9. 9.
    Sazama P, Pastvova J, Rizescu C, Tirsoaga A, Parvulescu VI, Garcia H, Kobera L, Seidel J, Rathousky J, Klein P, Jirka I, Moravkova J, Blechta V (2018) Catalytic properties of 3D graphene-like microporous carbons synthesized in a zeolite template. ACS Catal 8:1779–1789. CrossRefGoogle Scholar
  10. 10.
    Fernández S, Mercado A, Cuara E, Sierra U et al (2019) Asphalt as raw material of graphene-like resources. Fuel 241:297–303. CrossRefGoogle Scholar
  11. 11.
    He X, Zhang H, Zhang H, Li X, Xiao N, Qiu J (2014) Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J Mater Chem A 2:19633–19640. CrossRefGoogle Scholar
  12. 12.
    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53. CrossRefGoogle Scholar
  13. 13.
    Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, MacDonald AH, Ruoff RS (2014) Capacitance of carbon-based electrical double-layer capacitors. Nat Commun 5:3317. CrossRefPubMedGoogle Scholar
  14. 14.
    Stein A, Wang Z, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21:265–293. CrossRefGoogle Scholar
  15. 15.
    Dong S, He X, Zhang H, Xie X, M Y, C Y, Xiao N (2018) Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J Mater Chem A 6:15954–15960. CrossRefGoogle Scholar
  16. 16.
    Kang D, Liu Q, Gu J, Su Y, Zhang W, Zhang D (2015) “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 9:11225–11233. CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang J, Jin L, Cheng J, Hu H (2013) Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon 55:221–232. CrossRefGoogle Scholar
  18. 18.
    Wang X, Sun G, Routh P, Kim D, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098. CrossRefPubMedGoogle Scholar
  19. 19.
    Hulicova Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809. CrossRefGoogle Scholar
  20. 20.
    Han J, Zhang LL, Lee S, Oh J, Lee K, Potts JR, Ji J, Zhao X, Ruoff RS, Park S (2013) Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications. ACS Nano 7:19–26. CrossRefPubMedGoogle Scholar
  21. 21.
    Sevilla M, Fuertes AB (2012) Highly porous S-doped carbons. Microporous Mesoporous Mater 158:318–323. CrossRefGoogle Scholar
  22. 22.
    Seh ZW, Sun Y et al (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45:5605–5634. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chang J, Leung DYC, Wu CZ, Yuan ZH (2003) A review on the energy production, consumption, and prospect of renewable energy in China. Renew Sustain Energy Rev 7:453–468. CrossRefGoogle Scholar
  24. 24.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251. CrossRefGoogle Scholar
  25. 25.
    Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102–106. CrossRefGoogle Scholar
  26. 26.
    Li J, Liu K, Gao X, Yao B, Huo K, Cheng Y, Cheng X, Chen D, Wang B, Sun W, Ding D, Liu M, Huang L (2015) Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl Mater Interfaces 7:24622–24628. CrossRefPubMedGoogle Scholar
  27. 27.
    Chaudhari S, Kwon SY, Yu J-S (2014) Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Adv 4:38931–38938. CrossRefGoogle Scholar
  28. 28.
    Szabó T, Berkesi O, Forgό P, Josepovits K, Sanakis Y, Petridis D, Dékány J (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749. CrossRefGoogle Scholar
  29. 29.
    Yan J, Liu J, Fan P et al (2012) High−performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50:2179–2188. CrossRefGoogle Scholar
  30. 30.
    An N, An Y, Hu Z, Zhang Y, Yang Y, Lei Z (2015) Green and all-carbon asymmetric supercapacitor based on polyaniline nanotubes and anthraquinone functionalized porous nitrogen-doped carbon nanotubes with high energy storage performance. RSC Adv 5:63624–63633. CrossRefGoogle Scholar
  31. 31.
    Gao S, Li X, Li L, Wei X (2017) A versatile biomass derived carbon material for supercapacitor, oxygen reduction reaction and oil/water separation. Nano Energy 33:334–342. CrossRefGoogle Scholar
  32. 32.
    Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’ondu CK, Holt CMB, Olsen BC, Tak JK, Harfield D, Anyia AO, Mitlin D (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141. CrossRefPubMedGoogle Scholar
  33. 33.
    Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556–2564. CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang LL, Gu Y, Zhao G (2013) Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A1:9395–9408. CrossRefGoogle Scholar
  35. 35.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998. CrossRefGoogle Scholar
  36. 36.
    Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 4:717–724. CrossRefGoogle Scholar
  37. 37.
    Wang X, Yang Y, Hu Z et al (2018) Lamellar oxygen-enriched graphene hydrogel with linking-up network porous structure for high -performance supercapacitors. J Phys Chem C122:6526–6538. CrossRefGoogle Scholar
  38. 38.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. CrossRefPubMedGoogle Scholar
  39. 39.
    Gao S, Chen Y, Fan H, Wei X, Hu C, Luo H, Qu L (2014) Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J Mater Chem A 2(10):3317–3324. CrossRefGoogle Scholar
  40. 40.
    Liu M, Wang X, Zhu D, Li L, Duan H, Xu Z, Wang Z, Gan L (2017) Encapsulation of NiO nanoparticles in mesoporous carbon nanospheres for advanced energy storage. Chem Eng J 308:240–247. CrossRefGoogle Scholar
  41. 41.
    Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J (2015) 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv Funct Mater 25:6913–6920. CrossRefGoogle Scholar
  42. 42.
    Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597. CrossRefGoogle Scholar
  43. 43.
    Xu H, Wu C, Wei X, Gao S (2018) Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J Mater Chem A6:15340–15347. CrossRefGoogle Scholar
  44. 44.
    He SJ, Hou HQ, Chen W (2015) 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogendoped carbon nanotubes for high performance supercapacitors. J Power Sources 280:678–686. CrossRefGoogle Scholar
  45. 45.
    Paraknowitsch JP, Thomas A, Antonietti M (2010) A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. J Mater Chem 20:6573–6816. CrossRefGoogle Scholar
  46. 46.
    Huang S, Wang J, Pan Z et al (2017) Ultrahigh capacity and superior stability of three−dimensional porous graphene networks containing. J Mater Chem A5:7228–7242. CrossRefGoogle Scholar
  47. 47.
    Dhanya P, Aravindan V, et al (2014) 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. [J] Energy Environ Sci 7:728–735. CrossRefGoogle Scholar
  48. 48.
    He S, Hou H, Chen W (2015) 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen doped carbon nanotubes for high performance supercapacitors. [J] Journal of Power Sources 280:678–686. CrossRefGoogle Scholar
  49. 49.
    Jagadale AD, Kumbhar VS, Dhawale DS, Lokhande CD (2013) Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. [J] Electrochimica Acta 98:32–38. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenlian Chen
    • 1
  • Zhongai Hu
    • 1
    Email author
  • Yuying Yang
    • 1
  • Xiaotong Wang
    • 1
  • Yuanyuan He
    • 1
  • Yandong Xie
    • 1
  • Cuiming Zhu
    • 1
  • Yan Zhang
    • 1
  • Liwen Lv
    • 1
  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations