Advertisement

Ionics

, Volume 25, Issue 11, pp 5201–5211 | Cite as

Blending-based poly(vinylidene fluoride)/polymethyl methacrylate membrane for rechargeable lithium-ion batteries

  • Jiuqing LiuEmail author
  • Meng Liu
  • Chunfeng He
  • Jie Li
  • Qihou Li
  • Cheng Wang
  • Yang Xi
Original Paper
  • 116 Downloads

Abstract

A gel polymer electrolyte based on the blending membranes of poly(vinylidene fluoride) (PVDF)/polymethyl methacrylate (PMMA) has been manufactured through the non-solvent-induced phase separation (NIPS) method. Its physical and electrochemical properties are characterized, and the blending compatibility of the PVDF/PMMA polymer is demonstrated by thermodynamic analysis. The increase in PMMA content has a great effect on surface morphologies of the PVDF/PMMA blending membranes, especially in terms of PM-3 (membrane with the weight ratio of PVDF/PMMA = 6:4). The PM-3 membrane presents satisfactory ionic conductivity (2.18 mS cm−1 at 26 °C), acceptable thermal stability, and superior compatibility with lithium. In addition, its cycle performance (130.7 mAh g−1 after circulating 200 cycles at 1 C) and rate capability (133.3 mAh g−1 at 4 C) are superior to those of the Celgard 2320 (PP/PE/PP) separator. It is indicated that the PVDF/PMMA blending membrane is promising for the fabrication of rechargeable lithium-ion battery.

Keywords

Poly(vinylidene fluoride) Polymethyl methacrylate Gel polymer electrolyte Lithium-ion battery 

Notes

Funding information

This study was supported by the National Key R&D Program of China (Grant No. 2018YFB0104200).

References

  1. 1.
    Arora P, Zhang ZM (2004) Battery separators. Chem Rev 104:4419–4462Google Scholar
  2. 2.
    Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364Google Scholar
  3. 3.
    Zhang H, Zhou MY, Lin CE, Zhu BK (2015) Progress in polymeric separators for lithium ion batteries. RSC Adv 5:89848–89860Google Scholar
  4. 4.
    Cho TH, Tanaka M, Ohnishi H, Kondo Y, Yoshikazu M, Nakamura T, Sakai T (2010) Composite nonwoven separator for lithium-ion battery: development and characterization. J Power Sources 195:4272–4277Google Scholar
  5. 5.
    Lee H, Alcoutlabi M, Watson JV, Zhang X (2013) Polyvinylidene fluoride-co-chloro-trifluoroethylene and polyvinylidene fluoride-co-hexafluoropropylene nanofiber-coated polypropylene microporous battery separator separators. J Polym Sci B Polym Phys 51:349–357Google Scholar
  6. 6.
    Lee H, Alcoutlabi M, Toprakci O, Xu GJ, Watson JV, Zhang X (2014) Preparation and characterization of electrospun nanofiber-coated separator separators for lithium ion batteries. J Solid State Electrochem 18:2451–2458Google Scholar
  7. 7.
    Cui JQ, Liu JQ, He CF, Li J, Wu XF (2017) Composite of polyvinylidene fluoride–cellulose acetate with Al(OH)3 as a separator for high-performance lithium ion battery. J Membr Sci 541:661–667Google Scholar
  8. 8.
    Lee H, Jeon H, Gong S, Ryou MH, Lee YM (2018) A facile method to enhance theuniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators. Appl Surf Sci 427:139–146Google Scholar
  9. 9.
    Zhao XX, Zhang ZL, Yang SS, Liang GC (2017) Inorganic ceramic fiber separator for electrochemical and safety performance improvement of lithium ion batteries. Ceram Int 43:14775–14783Google Scholar
  10. 10.
    Zhang ZY, Lai YQ, Zhang ZA, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61Google Scholar
  11. 11.
    Wang GC, Lai YQ, Zhang ZA, Li J, Zhang ZY (2015) Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator. J Mater Chem A 3:7139–7144Google Scholar
  12. 12.
    He CF, Liu JQ, Li J, Zhu FF, Zhao HJ (2018) Blending based polyacrylonitrile/poly (vinylalcohol) separator for rechargeable lithium ion batteries. J Membr Sci 560:30–37Google Scholar
  13. 13.
    Li WL, Wu YH, Wang JW, Huang D, Chen LZ, Yang G (2015) Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. Eur Polym J 67:365–372Google Scholar
  14. 14.
    Cheng XL, Pan J, Zhao Y, Liao M, Peng HS (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1702184Google Scholar
  15. 15.
    Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim Acta 235:210–222Google Scholar
  16. 16.
    Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191Google Scholar
  17. 17.
    Liu LP, Wang Z, Zhao ZK, Zhao YJ, Li F, Yang LB (2016) PVDF/PAN/SiO2 polymer electrolyte separator prepared by combination of phase inversion and chemical reaction method for lithium ion batteries. J Solid State Electrochem 20:699–712Google Scholar
  18. 18.
    Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288Google Scholar
  19. 19.
    Kahn WS, Asmatulu R, Rodriguez V, Ceylan M (2014) Enhancing thermal and ionic conductivities of electrospun PAN and PMMA nanofibers by graphene nanoflake additions for battery-separator applications. Int J Energy Res 38:2044–2051Google Scholar
  20. 20.
    Subramania A, Sundaram NTK, Kumar GV, Vasudevan T (2006) New polymer electrolyte based on (PVA-PAN) blend for Li-ion battery applications. Ionics 12:175–178Google Scholar
  21. 21.
    Dandekar MP, Itankar SG, Kondawar SB, Nandanwar DV, Koinkar P (2018) Photoluminescent electrospun europium complex Eu(TTA)3phen embedded polymer blends nanofibers. Opt Mater 85:483–490Google Scholar
  22. 22.
    Mahant YP, Kondawar SB, Nandanwar DV, Koinkar P (2018) Poly (methyl methacrylate) reinforced poly (vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries. Mater Renew Sustain Energy 7:5Google Scholar
  23. 23.
    Yvonne T, Zhang CY, Zhang CH, Omollo E, Ncube S (2014) Properties of electrospun PVDF/PMMA/CA membrane as lithium based battery separator. Cellulose 21:2811–2818Google Scholar
  24. 24.
    Liang YZ, Cheng SC, Zhao JM, Zhang CH, YP Q (2013) Preparation and characterization of electrospun PVDF/PMMA composite fibrous membranes based separator for lithium-ion batteries. Adv Mater Res 122:750–752Google Scholar
  25. 25.
    Idris NH, Rahman MM, Wang JZ, Liu HK (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201:294–300Google Scholar
  26. 26.
    Ma XD, Zuo XX, Wu JH, Deng X, Xiao X, Liu JS, Nan JM (2018) Polyethylene-supported ultra-thin polyvinylidene fluoride/hydroxyethyl cellulose blended polymer electrolyte for 5 V high voltage lithium ion batteries. J Mater Chem A 6:1496–1503Google Scholar
  27. 27.
    Zhao MK, Zuo XX, Ma XD, Xiao X, Liu JS, Nan JM (2017) Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. J Membr Sci 532:30–37Google Scholar
  28. 28.
    Zuo XX, Wu JH, Ma XD, Deng X, Cai JX, Chen QY, Liu JS, Nan JM (2018) A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance. J Power Sources 407:44–52Google Scholar
  29. 29.
    Song DY, Xu C, Chen YF, He JR, Zhao Y, Li PJ, Lin W, Fu F (2015) Enhanced thermal and electrochemical properties of PVDF-HFP/PMMA polymer electrolyte by TiO2 nanoparticles. Solid State Ionics 282:31–36Google Scholar
  30. 30.
    Rajendran S, Mahendran O, Kannan R (2002) Lithium ion conduction in plasticized PMMA–PVdF polymer blend electrolytes. Mater Chem Phys 74:52–57Google Scholar
  31. 31.
    Wu QY, Liang HQ, Gu L, Yu Y, Huang YQ, Xu ZK (2016) PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries. Polymer 107:54–60Google Scholar
  32. 32.
    Li D, Shi DQ, Yuan ZZ, Feng K, Zhang HM, Li HF (2017) A low cost shutdown sandwich-like composite separator with superior thermo-stability for lithium-ion battery. J Membr Sci 542:1–7Google Scholar
  33. 33.
    Amaral FA, Dalmolin C, Canobre SC, Bocchi N, Rocha-Filho RC, Biaggio SR (2017) Electrochemical and physical properties of poly (acrylonitrile)/poly (vinyl acetate)-based gel electrolytes for lithium ion batteries. J Power Sources 164:379–385Google Scholar
  34. 34.
    Aouachria K, Belhaneche-Bensemra N (2006) Miscibility of PVC/PMMA blends by vicat softening temperature, viscometry, DSC and FTIR analysis. Polym Test 25:1101–1108Google Scholar
  35. 35.
    Bottino A, Capannelli G, Munari S, Turturro A (1988) Solubility parameters of poly (vinylidene fluoride). J Polym Sci B Polym Phys 26:785–794Google Scholar
  36. 36.
    Bohn L (1968) Incompatibility and phase formation in solid polymer mixtures and graft and block copolymers. Rubber Chem Technol 41:495–513Google Scholar
  37. 37.
    Barton AFM (1975) Solubility parameters. Chem Rev 75:731–753Google Scholar
  38. 38.
    Schneier B (1973) Polymer compatibility. J Appl Polym Sci 17:3175–3185Google Scholar
  39. 39.
    Huang YH, Xiao CB (2007) Miscibility and mechanical properties of quaternized polysulfone/benzoyl guar gum blends. Polymer 48:371–381Google Scholar
  40. 40.
    Small PA (1953) Some factors affecting the solubility of polymers. J Appl Chem 3:71–80Google Scholar
  41. 41.
    Li SW, Cui ZY, Zhang L, He BQ, Li JX (2016) The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend separators. J Membr Sci 513:1–11Google Scholar
  42. 42.
    Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (1999) Polymer handbook, 4th edn. Wiley, New York, p 951Google Scholar
  43. 43.
    Padmaraj O, Venkateswarlu M, Satyanarayana N (2014) Characterization and electrochemical properties of P(VdF-co-HFP) based electrospun nanocomposite fibrous polymer electrolyte for lithium battery applications. Electroanalysis 26:2373–2379Google Scholar
  44. 44.
    Ma T, Cui ZY, Wu Y, Qin SH, Wang H, Yan F, Han N, Li JX (2013) Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties. J Membr Sci 444:213–222Google Scholar
  45. 45.
    Helan Flora X, Ulaganathan M, Babu RS, Rajendran S (2012) Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications. Ionics 18:731–736Google Scholar
  46. 46.
    Nicotera I, Coppola L, Oliviero C, Castriota M, Cazzanelli E (2006) Investigation of ionic conduction and mechanical properties of PMMA-PVdF blend–based polymer electrolytes. Solid State Ionics 177:581–588Google Scholar
  47. 47.
    Jung HR, Ju DH, Lee WJ, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637Google Scholar
  48. 48.
    Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008)  Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membr Sci 325:957–963Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiuqing Liu
    • 1
    Email author
  • Meng Liu
    • 1
  • Chunfeng He
    • 1
  • Jie Li
    • 1
  • Qihou Li
    • 1
  • Cheng Wang
    • 1
  • Yang Xi
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations