pp 1–7 | Cite as

Micro-structured Si@Cu3Si@C ternary composite anodes for high-performance Li-ion batteries

  • Hui Zhang
  • Hui XuEmail author
  • Xiaofei Lou
  • Hong Jin
  • Ping Zong
  • Shiwei Li
  • Yu Bai
  • Fei MaEmail author
Original Paper


A micro-structured Si@Cu3Si@C ternary composite is designed to ease volume expansion of Si as well as to enhance the conductivity of the whole electrode. Structurally, Si particles with carbon shells are agglomerated to form a hierarchical micro-structured ternary component sphere. A benign initial coulombic efficiency (ICE) 70.5% with high reversible capacity after 200 cycles (1477 mAh g−1, 400 mA g−1) of Si@Cu3Si@C anode can be obtained to demonstrate the superiorities of this structure. This unique porous hierarchical structure can be helpful to facilitate the ions transmission and provide void spaces for stress releasing while improving the conductivity of Si. Carbon shells formed on the Si are available for improving the conductivity of Si electrode and easing some extra side reactions. Cu3Si alloy acts as a buffer to alleviate the volume expansion of Si. Thus, a comparable stable structure with high conductivity can be maintained for enhancing the performance of Si. In addition, a low vacuum carbonization process is also used for energy saving which might be adopted in other materials fabrication.


Micro-structured Silicide buffer constitute Ternary composite Silicon anode Li-ion batteries 


Funding information

This work is sponsored by the Collaborative Innovation Centre of Suzhou Nano-Science and Technology, National Natural Science Foundation of China (No. 51771144, No. 21805221), Jiangsu Province Fundamental Research Grant (BK20160389), Suzhou City Key Industry Technological Innovation (Perspective Application Research) Grant (SYG201621), and Natural Science Foundation of Shaanxi Province (No. 2017JZ015).

Supplementary material

11581_2019_3043_MOESM1_ESM.pdf (229 kb)
ESM 1 (PDF 229 kb)


  1. 1.
    Zhao L, Wu HH, Yang C, Zhang Q, Zhong G, Zheng Z, Chen H, Wang J, He K, Wang B, Zhu T, Zeng XC, Liu M, Wang MS (2018) Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano 12(12):12597–12611CrossRefGoogle Scholar
  2. 2.
    Chen H, Zhang Q, Wang J, Xu D, Li X, Yang Y, Zhang K (2014) Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. J Mater Chem A 2(22):8483CrossRefGoogle Scholar
  3. 3.
    Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett 12(6):3315–3321CrossRefGoogle Scholar
  4. 4.
    An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu PK, Huo K (2019) Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun 10(1):1447CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Chen H, Luo L, Zhao B, Luo H, Han X, Wang J, Wang C, Yang Y, Zhu T, Liu M (2018) Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 11(3):669–681CrossRefGoogle Scholar
  6. 6.
    Zhang H, Xu H, Jin H, Li C, Bai Y, Lian K (2017) Flower-like carbon with embedded silicon nano particles as an anode material for Li-ion batteries. RSC Adv 7:30032–30037CrossRefGoogle Scholar
  7. 7.
    Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1):74–103CrossRefGoogle Scholar
  8. 8.
    Gao P, Fu J, Yang J, Lv R, Wang J, Nuli Y, Tang X (2009) Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. Phys Chem Chem Phys 11(47):11101–11105CrossRefGoogle Scholar
  9. 9.
    Hou G, Cheng B, Cao Y, Yao M, Li B, Zhang C, Weng Q, Wang X, Bando Y, Golberg D, Yuan F (2016) Scalable production of 3D plum-pudding-like Si/C spheres: towards practical application in Li-ion batteries. Nano Energy 24:111–120CrossRefGoogle Scholar
  10. 10.
    Lu B, Ma B, Deng X, Li W, Wu Z, Shu H, Wang X (2017) Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery. ACS Appl Mater Interfaces 9:32829–32839CrossRefGoogle Scholar
  11. 11.
    Xing Y, Shen T, Guo T, Wang X, Xia X, Gu C, Tu J (2018) A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries. J Power Sources 384:207–213CrossRefGoogle Scholar
  12. 12.
    Luo W, Shen D, Zhang R, Zhang B, Wang Y, Dou SX, Liu HK, Yang J (2016) Germanium nanograin decoration on carbon shell: boosting lithium-storage properties of silicon nanoparticles. Adv Funct Mater 26:7800–7806CrossRefGoogle Scholar
  13. 13.
    Huang YH, Bao Q, Chen BH, Duh JG (2015) Nano-to-microdesign of marimo-like carbon nanotubes supported frameworks via in-spaced polymerization for high performance silicon lithium ion battery anodes. Small 11(19):2314–2322CrossRefGoogle Scholar
  14. 14.
    Zheng Z, Wu H-H, Chen H, Cheng Y, Zhang Q, Xie Q, Wang L, Zhang K, Wang M-S, Peng D-L, Zeng XC (2018) Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 10(47):22203–22214CrossRefGoogle Scholar
  15. 15.
    Chae S, Ko M, Park S, Kim N, Ma J, Cho J (2016) Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy Environ Sci 9(4):1251–1257CrossRefGoogle Scholar
  16. 16.
    Zhu J, Yang J, Xu Z, Wang J, Nuli Y, Zhuang X, Feng X (2017) Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale 9:8871–8878CrossRefGoogle Scholar
  17. 17.
    Fang S, Tong Z, Nie P, Liu G, Zhang X (2017) Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9(22):18766–18773CrossRefGoogle Scholar
  18. 18.
    Zhang H, Zhang X, Jin H, Zong P, Bai Y, Lian K, Xu H, Ma F (2019) A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes. Chem Eng J 360:974–981CrossRefGoogle Scholar
  19. 19.
    Wang L, Gao B, Peng C, Peng X, Fu J, Chu PK, Huo K (2015) Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale 7:13840–13847CrossRefGoogle Scholar
  20. 20.
    Jing S, Jiang H, Hu Y, Shen J, Li C (2015) Face-to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv Funct Mater 25:5395–5401CrossRefGoogle Scholar
  21. 21.
    Chen S, Chen Z, Xu X, Cao C, Xia M, Luo Y (2018) Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. SmallGoogle Scholar
  22. 22.
    Sethuraman VA, Srinivasan V, Newman J (2012) Analysis of electrochemical lithiation and delithiation kinetics in silicon. J Electrochem Soc 160(2):A394–A403CrossRefGoogle Scholar
  23. 23.
    Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS, Kim H, Huang Y, Hwang KC, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10(5):1710–1716CrossRefGoogle Scholar
  24. 24.
    Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 14(8):4505–4510CrossRefGoogle Scholar
  25. 25.
    Wang B, Li X, Qiu T, Luo B, Ning J, Li J, Zhang X, Liang M, Zhi L (2013) High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett 13(11):5578–5584CrossRefGoogle Scholar
  26. 26.
    Westover AS, Freudiger D, Gani ZS, Share K, Oakes L, Carter RE, Pint CL (2015) On-chip high power porous silicon lithium ion batteries with stable capacity over 10 000 cycles. Nanoscale 7(1):98–103CrossRefGoogle Scholar
  27. 27.
    Li Y, Yan K, Lee H-W, Lu Z, Liu N, Cui Y (2016) Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energy 1:15029CrossRefGoogle Scholar
  28. 28.
    Pang CL, Song HW, Li N, Wang CX (2015) A strategy for suitable mass production of a hollow Si@C nanostructured anode for lithium ion batteries. RSC Adv 5(9):6782–6789CrossRefGoogle Scholar
  29. 29.
    Yang H, Huang S, Huang X, Fan F, Liang W, Liu XH, Chen LQ, Huang JY, Li J, Zhu T, Zhang S (2012) Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett 12(4):1953–1958CrossRefGoogle Scholar
  30. 30.
    Yang Y, Liu R, Wu J, Jiang X, Cao P, Hu X, Pan T, Qiu C, Yang J, Song Y, Wu D, Su Y (2015) Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci Rep 5:13480CrossRefGoogle Scholar
  31. 31.
    Liang G, Qin X, Zou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B (2018) Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127:424–431CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behaviour of MaterialsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Jiaotong University Suzhou AcademySuzhouPeople’s Republic of China
  3. 3.School of Nano-Science and Nano-Engineering (Suzhou)Xi’an Jiaotong UniversitySuzhouPeople’s Republic of China

Personalised recommendations