pp 1–10 | Cite as

Proton conductivity and structural properties of nanocomposites based on boehmite incorporated poly(vinlyphosphonic acid)

  • Ayhan BozkurtEmail author
  • Xiao Ling
  • Katrin F. Domke
Original Paper


In this work, novel nanocomposite polymer electrolytes bearing boehmite (Bh) cored polyvinylphosphonic acid (PVPA) were successfully produced and characterized. Nanocomposites based on PVPA(Bh)x were formed where x is the weight percentage of Bh in the PVPA matrix ranging from 2.5 to 20%. The interaction of host polymer and the additive, thermal properties, morphology as well as proton conductivities of the electrolytes were systematically studied. The reaction between PVPA and Bh was confirmed by Raman spectroscopy (RS) and X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) showed that nanocomposites have thermal stability up to around 200 °C. Differential scanning calorimetry (DSC) indicated the shifting of Tg to higher temperatures with rising Bh content. Scanning electron microscopy (SEM) pictures illustrated the wrapping of Bh by PVPA chains forming polymer-coated nanoparticles for both PVPA(Bh)5 and PVPA(Bh)10 and nano-platelet formation for PVPA(Bh)20. In a completely dry state, the proton conductivity of nanocomposite material increased with Bh up to certain content. Anhydrous PVPABh(10) is the optimum combination and conductivity was measured as 0.02 mS/cm at 150 °C. The same electrolyte has conductivity of 0.002 S/cm at ambient temperature in hydrated state (RH = 100%).


Polyvinylphosphonic acid Boehmite Nanocomposite Proton conductivity Raman spectroscopy 


Supplementary material

11581_2019_3036_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)


  1. 1.
    Peponi L, Puglia D, Torre L, Valentini L, Kenny JM (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R Rep 85:1–46CrossRefGoogle Scholar
  2. 2.
    Aslan A, Bozkurt A (2012) Nanocomposite polymer electrolyte membranes based on poly(vinylphosphonic acid)/TiO2 nanoparticles. J Mater Sci 27:3090Google Scholar
  3. 3.
    Yang H, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237:145–161CrossRefGoogle Scholar
  4. 4.
    Zakil FA, Kamarudin SK, Basri S (2016) Modified Nafion membranes for direct alcohol fuel cells: an overview. Renew Sust Energ Rev 65:841–852CrossRefGoogle Scholar
  5. 5.
    Kreuer KD, Vielstich IW, Lamm A, Gasteiger HS (2003) Handbook of fuel cell fundamentals, technology and applications. Wiley, Chichester, p 420Google Scholar
  6. 6.
    Tian J-H, Gao P-F, Zhang Z-Y, Luo W-H, Shan Z-G (2008) Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. Int J Hydrog Energy 33:5686CrossRefGoogle Scholar
  7. 7.
    Kumar B, Khare IN, Hashmi SA, Chandra A (2007) Electroactive polymers: materials and devices, vol I. Allied Publishers, New Delhi, p 53Google Scholar
  8. 8.
    Padmavathi R, Karthikumar R, Sangeetha D (2012) Multilayered sulphonated polysulfone/ silica composite membranes for fuel cell applications. Electrochim Acta 71:283–293CrossRefGoogle Scholar
  9. 9.
    Sacc’a A, Carbone A, Passalacqua E, D’Epifanio A, Licoccia S, Traversa E (2005) Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). J Power Sources 152:16–21CrossRefGoogle Scholar
  10. 10.
    Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochim Acta 54:4111–4117CrossRefGoogle Scholar
  11. 11.
    Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Ann Rev Mater 33:503–555CrossRefGoogle Scholar
  12. 12.
    Aslan A, Çelik SU, Bozkurt A (2009) Proton-conducting properties of the membranes based on poly (vinyl phosphonic acid) grafted poly (glycidyl methacrylate). Solid State Ionics 180(23–25):1240–1245CrossRefGoogle Scholar
  13. 13.
    Sinirlioglu D, Çelik SÜ, Muftuoglu AE, Bozkurt A (2015) Novel composite polymer electrolyte membranes based on poly(vinyl phosphonic acid) and poly (5-(methacrylamido)tetrazole). Polym Eng Sci 55:260–269CrossRefGoogle Scholar
  14. 14.
    Sen U, Acar O, Celik SU, Bozkurt A, Ata A, Tokumasu T, Miyamoto A (2013) Proton conducting blend membranes of Nafion/poly (vinylphosphonic acid) for proton exchange membrane fuel cells. J Polym Res 20(9):217CrossRefGoogle Scholar
  15. 15.
    Huang H, Chang S-J, Li C-C, Chen C-A (2017) Boehmite-based microcapsules as flame-retardants for Lithium-ion batteries. Electrochim Acta 228:597–603CrossRefGoogle Scholar
  16. 16.
    Sun T, Zhuo Q, Chen Y, Wu Z (2015) Synthesis of boehmite and its effect on flame retardancy of epoxy resin. High Perform Polym 27:100–104CrossRefGoogle Scholar
  17. 17.
    Yuan Q, Zhang X, Gong Y, Ma Y, Xu J, Yang S (2016) Reversible molecular adsorption of free-standing nano-compositefilm made from boehmite and poly(acrylic acid). Colloids Surf A Physicochem Eng Asp 507:210–217CrossRefGoogle Scholar
  18. 18.
    Das K, Ray SS, Chapple S, W-Smith J (2013) Mechanical, thermal, and fire properties of biodegradable Polylactide/Boehmite alumina composites. Ind Eng Chem Res 52(18):6083–6091CrossRefGoogle Scholar
  19. 19.
    Florjanczyk Z, Lasota A, Wolak A, Zachara J (2006) Organically modified aluminum phosphates: synthesis and characterization of model compounds containing diphenyl phosphate ligands. Chem Mater 18:1995–2003CrossRefGoogle Scholar
  20. 20.
    Foundas M, Britcher LG, Fornasiero D, Morris GE (2015) Boehmite suspension behaviour upon adsorption of methacrylate–phosphonate copolymers. Powder Technol 269:385–391CrossRefGoogle Scholar
  21. 21.
    Aslan A, Gölcük K, Bozkurt A (2012) Nanocomposite polymer electrolytes membranes based on poly(vinylphosphonic acid)/SiO2. J Polym Res 19:22CrossRefGoogle Scholar
  22. 22.
    Goktepe F, Çelik SU, Bozkurt A (2008) Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes. J Non-Cryst Solids 354:3637–3642CrossRefGoogle Scholar
  23. 23.
    Ruan HD, Frost RL, Kloprogge JT (2001) Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J Raman Spectrosc 32:745–750CrossRefGoogle Scholar
  24. 24.
    Niaura G, Gaigalas AK, Vilker VL (1997) Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes. J Phys Chem B 101(45):9250–9262CrossRefGoogle Scholar
  25. 25.
    Piergies N, Proniewicz E (2014) Structure characterization of [N-Phenylamino(2-boronphenyl)-R-methyl]phosphonic acid by vibrational spectroscopy and density functional theory calculations. J Spectrosc 2014:8CrossRefGoogle Scholar
  26. 26.
    Förner W, Badawi HM (2010) Vibrational spectra of Phenylphosphonic and Phenylthiophosphonic acid and their complete assignment 65b. Z Naturforsch 65:357–s374CrossRefGoogle Scholar
  27. 27.
    Özpozan T, Schrader B, Keller S (1997) Monitoring of the polymerization of vinylacetate by near IR FT Raman spectroscopy. Spectrochim Acta A 53:1Google Scholar
  28. 28.
    Sevil F, Bozkurt A (2005) Proton conduction in PVPA –Benzimidazole hybrid electrolytes. Turk J Chem 29:377Google Scholar
  29. 29.
    Gunday ST, Bozkurt A, Meyer WH, Wegner G (2006) Effects of different acid functional groups on proton conductivity of polymer-1,2,4-triazole blends. J Polym Sci B Polym Phys 44:3315–3322CrossRefGoogle Scholar
  30. 30.
    Chen W, Wu S, Lei Y, Liao Z, Guo B, Liang X, Jia D (2011) Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid. Polymer 52:4387–4395CrossRefGoogle Scholar
  31. 31.
    Özden Ş, Çelik SÜ, Bozkurt A (2010) Synthesis and proton conductivity studies of doped azole functional polymer electrolyte membranes. Electrochim Acta 55(28):8498–8503CrossRefGoogle Scholar
  32. 32.
    Kufacı M, Bozkurt A, Tülü M (2006) Poly (ethyleneglycol methacrylate phosphate) and heterocycle based proton conducting composite materials. Solid State Ionics 177(11–12):1003–1007CrossRefGoogle Scholar
  33. 33.
    Eikerling M, Kornyshev AA, Kuznetsov AM, Ulstrup J, Walbran S (2001) Mechanisms of proton conductance in polymer electrolyte membranes. J Phys Chem B 105:3646–3662CrossRefGoogle Scholar
  34. 34.
    Wu H, Hou W, Wang J et al (2010) Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. J Power Sources 195:4104–4113CrossRefGoogle Scholar
  35. 35.
    Bozkurt A, Meyer WH (2001) Proton conducting blends of poly (4-vinylimidazole) with phosphoric acid. Solid State Ionics 138(3–4):259–265CrossRefGoogle Scholar
  36. 36.
    Bozkurt A, Ise M, Kreuer KD, Meyer WH, Wegner G (1999) Proton-conducting polymer electrolytes based on phosphoric acid. Solid State Ionics 125(1–4):225–233CrossRefGoogle Scholar
  37. 37.
    Aslan A, Çelik SÜ, Şen Ü, Haser R, Bozkurt A (2009) Intrinsically proton-conducting poly(1-vinyl-1,2,4-triazole)/triflic acid blends. Electrochim Acta 54:2957–2961CrossRefGoogle Scholar
  38. 38.
    Kreuer K-D (1996) Proton conductivity: materials and applications. Chem Mater 610(2001):8Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, IRMCImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations