, Volume 25, Issue 10, pp 4727–4737 | Cite as

Ultrafine MnO particles embedded in three-dimensional porous g-C3N4/C spheres synthesized through aerosol-pyrolysis route for high energy-density lithium-ion batteries

  • Peng Song
  • Ziwei Deng
  • Songpu Cheng
  • Hongbo Liu
  • Yuxi ChenEmail author
Original Paper


To improve electrochemical performance of MnO-based anode materials for high energy-density lithium-ion batteries, porous MnO/g-C3N4/carbon composite spheres have been synthesized through an aerosol-pyrolysis route. Microstructural investigations indicate that ultrafine MnO particles are homogeneously embedded in the three-dimensional g-C3N4/carbon porous spheres. The electrochemical properties of the porous MnO/g-C3N4/carbon composite spheres have been systematically evaluated. The porous MnO/g-C3N4/carbon composite spheres with g-C3N4/carbon content of 8.6 wt.% display excellent electrochemical properties, in which the first-cycle discharge capacity reaches 1096.8 mAh g−1 at 0.2 C, and the discharge/charge capacities reach 918.9/605.8 mAh g−1 at 0.5 C. The highest reversible capacity is 781.9 mAh g−1, which is higher than the theoretical capacity of MnO (755 mAh g−1). Furthermore, the reversible capacity retention reaches 99% after 150 cycles at 0.5 C. The three-dimensional porous g-C3N4/carbon conductive network, the ultrafine MnO particles with homogeneous distribution and the pseudocapacitive behavior are the main reasons for enhancement of the electrochemical performance of the MnO/g-C3N4/carbon composite spheres.


MnO G-C3N4 Aerosol-pyrolysis Lithium-ion batteries Electrochemical performance 


Funding information

The work was supported by the National Natural Science Foundation of China (51472083).


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Etacheri V, Marom R, Ran E, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  3. 3.
    Lunghao HB, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1684–1687CrossRefGoogle Scholar
  4. 4.
    Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  5. 5.
    Chae BM, Oh ES, Lee YK (2015) Conversion mechanisms of cobalt oxide anode for Li-ion battery: in situ X-ray absorption fine structure studies. J Power Sources 274:748–754CrossRefGoogle Scholar
  6. 6.
    Li K, Chen H, Shua F, Xue D, Guo X (2014) Facile synthesis of iron-based compounds as high performance anode materials for Li-ion batteries. RSC Adv 4:36507–36512CrossRefGoogle Scholar
  7. 7.
    Alfaruqi MH, Gim J, Kim S, Song J, Duong PT, Jo J, Baboo JP, Xiu Z, Mathew V, Kim J (2016) One-step pyro-synthesis of a nanostructured Mn3O4/C electrode with long cycle stability for rechargeable lithium-ion batteries. Chem Eur J 22:2039–2045CrossRefGoogle Scholar
  8. 8.
    Lv K, Zhang Y, Zhang D, Ren W, Sun L (2017) Mn3O4 nanoparticles embedded in 3D reduced graphene oxide network as anode for high-performance lithium ion batteries. J Mater Sci Mater Electron 28:14919–14927CrossRefGoogle Scholar
  9. 9.
    Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26:1428–1436CrossRefGoogle Scholar
  10. 10.
    Han X, Chen WM, Han X, Tan YZ, Sun D (2016) Nitrogen-rich MOF derived porous Co3O4/N–C composites with superior performance in lithium-ion batteries. J Mater Chem 4:13040–13045CrossRefGoogle Scholar
  11. 11.
    Zheng X, Wang H, Wang C, Deng Z, Chen L, Li Y, Hasan T, Su BL (2016) 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 22:269–277CrossRefGoogle Scholar
  12. 12.
    Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25:6250–6255CrossRefGoogle Scholar
  13. 13.
    Qiu W, Balogun MS, Luo Y, Chen K, Zhu Y, Xiao X, Lu X, Liu P, Tong Y (2016) Three-dimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim Acta 193:32–38CrossRefGoogle Scholar
  14. 14.
    Zhang X, Hou Z, Li X, Liang J, Zhu Y, Qian Y (2016) MoO2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. Electrochim Acta 213:416–422CrossRefGoogle Scholar
  15. 15.
    Fan X, Li S, Lu L (2016) Porous micrometer-sized MnO cubes as anode of lithium ion battery. Electrochim Acta 200:152–160CrossRefGoogle Scholar
  16. 16.
    Wang H, Xu bZ, Li Z, Cui K, Ding J, Kohandehghan A, Tan X, Zahiri B, Olsen BC, Holt CM, Mitlin D (2014) Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett 14:1987–1994CrossRefGoogle Scholar
  17. 17.
    Yu XQ, He Y, Sun JP, Tang K, Li H, Chen LQ, Huang XJ (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun 11:791–794CrossRefGoogle Scholar
  18. 18.
    Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195:3300–3308CrossRefGoogle Scholar
  19. 19.
    Xu GL, Xu YF, Fang JC, Fu F, Sun H, Huang L, Yang S, Sun SG (2013) Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery. ACS Appl Mater Interfaces 5:6316–6323CrossRefGoogle Scholar
  20. 20.
    Li CC, Yu H, Yan Q, Hng HH (2016) Nitrogen doped carbon nanotubes encapsulated MnO nanoparticles derived from metal coordination polymer towards high performance lithium-ion battery anodes. Electrochim Acta 187:406–412CrossRefGoogle Scholar
  21. 21.
    Bai T, Zhou H, Zhou X, Liao Q, Chen S, Yang J (2017) N-doped carbon-encapsulated MnO@graphene nanosheet as high-performance anode material for lithium-ion batteries. J Mater Sci 52:11608–11619CrossRefGoogle Scholar
  22. 22.
    Liu DS, Liu DH, Hou BH (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRefGoogle Scholar
  23. 23.
    Li X, Shang X, Li D, Yue H, Wang S, Qiao L, He D (2015) Facile synthesis of porous MnO microspheres for high-performance lithium-on batteries. Part Part Syst Charact 31:1001–1007CrossRefGoogle Scholar
  24. 24.
    Li K, Shua F, Guo X, Xue D (2016) High performance porous MnO@C composite anode materials for lithium-ion batteries. Electrochim Acta 188:793–800CrossRefGoogle Scholar
  25. 25.
    Su J, Liang H, Gong XN, Lv XY, Long YF, Wen YX (2017) Fast preparation of porous MnO/C microspheres as anode materials for lithium-ion batteries. Nanomaterials 7(2017):121–134CrossRefGoogle Scholar
  26. 26.
    Xu GL, Xu YF, Sun H, Fu F, Zheng XM, Huang L, Li JT, Yang SH, Sun SG (2012) Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem Commun 48:8502–8504CrossRefGoogle Scholar
  27. 27.
    Su ML, Choi SH, Lee JK, Yun CK (2014) Electrochemical properties of graphene-MnO composite and hollow-structured MnO powders prepared by a simple one-pot spray pyrolysis process. Electrochim Acta 132:441–447CrossRefGoogle Scholar
  28. 28.
    Tsung CK, Fan J, Zheng N, Shi Q, Forman AJ, Wang J, Stucky GD (2010) A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem 47:8682–8686CrossRefGoogle Scholar
  29. 29.
    Xiang ZM, Chen YX, Li J, Xia XH, He YD, Liu HB (2017) Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. J Solid State Electrochem 21:2425–2432CrossRefGoogle Scholar
  30. 30.
    Wang WZ, Xu CK, Wang GH, Liu YK, Zheng CL (2002) Preparation of smooth single-crystal Mn3O4 nanowires. Adv Mater 14:837–840CrossRefGoogle Scholar
  31. 31.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in tio2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
  32. 32.
    Ong WJ, Tan LL, Ng YH, Yong SK, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem Rev 116:7159–7329CrossRefGoogle Scholar
  33. 33.
    Zheng Y, Jiao Y, Ge L, Liu J, Jaroniec M, Qiao SZ (2013) Controllable co-doping of boron and nitrogen in graphene for an enhanced synergistic catalysis effect. Angew Chem Int Ed 52:3110–3116CrossRefGoogle Scholar
  34. 34.
    Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem 53:7281–7285CrossRefGoogle Scholar
  35. 35.
    Ma TY, Ran J, Dai S, Jaroniec M, Qiao SZ (2015) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed 54:4646–4650CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Chen P, Gao X, Wang B, Liu H, Wu H (2016) Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv Funct Mater 26:7754–7765CrossRefGoogle Scholar
  37. 37.
    Ong WJ, Tan LL, Chai SP, Yong ST (2015) Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem Commun 51:858–861CrossRefGoogle Scholar
  38. 38.
    Chai B, Peng T, Mao J, Li K, Zan L (2012) Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752CrossRefGoogle Scholar
  39. 39.
    Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509:26–29CrossRefGoogle Scholar
  40. 40.
    Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron 28:7784–7796CrossRefGoogle Scholar
  41. 41.
    Wang J, Liu W, Chen J, Wang H, Liu S, Chen S (2016) Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys. Electrochim Acta 188:210–217CrossRefGoogle Scholar
  42. 42.
    Eftekhari A, Mohamedi M (2017) Tailoring Pseudocapacitive materials from a mechanistic perspective. Mater Today Energy 6:211–−229CrossRefGoogle Scholar
  43. 43.
    Chao DL, Liang P, Chen Z, Bai LY, Shen H, Liu XX, Xia XH, Zhao YL, Savilov SV, Lin JY, Shen ZX (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219CrossRefGoogle Scholar
  44. 44.
    Li S, Liu HB, Chen YX (2016) Evolution of crystal structure and electrochemical performance of layered Li1.20Ti0.44Cr0.36O2/C cathode materials with cycling. Ionics 22:2291–2298CrossRefGoogle Scholar
  45. 45.
    Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J (2008) The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid-State Lett 11:170–174CrossRefGoogle Scholar
  46. 46.
    Dees D, Gunen E, Abraham D, Jansen A, Prakash J (2005) Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. J Electrochem Soc 152:1409–1417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peng Song
    • 1
  • Ziwei Deng
    • 1
  • Songpu Cheng
    • 1
  • Hongbo Liu
    • 1
  • Yuxi Chen
    • 1
    Email author
  1. 1.College of Material Science and Engineering/Hunan Province Key Laboratory for Advanced Carbon Materials and Applied TechnologyHunan UniversityChangshaChina

Personalised recommendations