Ultrafine MnO particles embedded in three-dimensional porous g-C3N4/C spheres synthesized through aerosol-pyrolysis route for high energy-density lithium-ion batteries
- 92 Downloads
Abstract
To improve electrochemical performance of MnO-based anode materials for high energy-density lithium-ion batteries, porous MnO/g-C3N4/carbon composite spheres have been synthesized through an aerosol-pyrolysis route. Microstructural investigations indicate that ultrafine MnO particles are homogeneously embedded in the three-dimensional g-C3N4/carbon porous spheres. The electrochemical properties of the porous MnO/g-C3N4/carbon composite spheres have been systematically evaluated. The porous MnO/g-C3N4/carbon composite spheres with g-C3N4/carbon content of 8.6 wt.% display excellent electrochemical properties, in which the first-cycle discharge capacity reaches 1096.8 mAh g−1 at 0.2 C, and the discharge/charge capacities reach 918.9/605.8 mAh g−1 at 0.5 C. The highest reversible capacity is 781.9 mAh g−1, which is higher than the theoretical capacity of MnO (755 mAh g−1). Furthermore, the reversible capacity retention reaches 99% after 150 cycles at 0.5 C. The three-dimensional porous g-C3N4/carbon conductive network, the ultrafine MnO particles with homogeneous distribution and the pseudocapacitive behavior are the main reasons for enhancement of the electrochemical performance of the MnO/g-C3N4/carbon composite spheres.
Keywords
MnO G-C3N4 Aerosol-pyrolysis Lithium-ion batteries Electrochemical performanceNotes
Funding information
The work was supported by the National Natural Science Foundation of China (51472083).
References
- 1.Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
- 2.Etacheri V, Marom R, Ran E, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
- 3.Lunghao HB, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1684–1687CrossRefGoogle Scholar
- 4.Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
- 5.Chae BM, Oh ES, Lee YK (2015) Conversion mechanisms of cobalt oxide anode for Li-ion battery: in situ X-ray absorption fine structure studies. J Power Sources 274:748–754CrossRefGoogle Scholar
- 6.Li K, Chen H, Shua F, Xue D, Guo X (2014) Facile synthesis of iron-based compounds as high performance anode materials for Li-ion batteries. RSC Adv 4:36507–36512CrossRefGoogle Scholar
- 7.Alfaruqi MH, Gim J, Kim S, Song J, Duong PT, Jo J, Baboo JP, Xiu Z, Mathew V, Kim J (2016) One-step pyro-synthesis of a nanostructured Mn3O4/C electrode with long cycle stability for rechargeable lithium-ion batteries. Chem Eur J 22:2039–2045CrossRefGoogle Scholar
- 8.Lv K, Zhang Y, Zhang D, Ren W, Sun L (2017) Mn3O4 nanoparticles embedded in 3D reduced graphene oxide network as anode for high-performance lithium ion batteries. J Mater Sci Mater Electron 28:14919–14927CrossRefGoogle Scholar
- 9.Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26:1428–1436CrossRefGoogle Scholar
- 10.Han X, Chen WM, Han X, Tan YZ, Sun D (2016) Nitrogen-rich MOF derived porous Co3O4/N–C composites with superior performance in lithium-ion batteries. J Mater Chem 4:13040–13045CrossRefGoogle Scholar
- 11.Zheng X, Wang H, Wang C, Deng Z, Chen L, Li Y, Hasan T, Su BL (2016) 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 22:269–277CrossRefGoogle Scholar
- 12.Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25:6250–6255CrossRefGoogle Scholar
- 13.Qiu W, Balogun MS, Luo Y, Chen K, Zhu Y, Xiao X, Lu X, Liu P, Tong Y (2016) Three-dimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim Acta 193:32–38CrossRefGoogle Scholar
- 14.Zhang X, Hou Z, Li X, Liang J, Zhu Y, Qian Y (2016) MoO2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. Electrochim Acta 213:416–422CrossRefGoogle Scholar
- 15.Fan X, Li S, Lu L (2016) Porous micrometer-sized MnO cubes as anode of lithium ion battery. Electrochim Acta 200:152–160CrossRefGoogle Scholar
- 16.Wang H, Xu bZ, Li Z, Cui K, Ding J, Kohandehghan A, Tan X, Zahiri B, Olsen BC, Holt CM, Mitlin D (2014) Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett 14:1987–1994CrossRefGoogle Scholar
- 17.Yu XQ, He Y, Sun JP, Tang K, Li H, Chen LQ, Huang XJ (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun 11:791–794CrossRefGoogle Scholar
- 18.Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195:3300–3308CrossRefGoogle Scholar
- 19.Xu GL, Xu YF, Fang JC, Fu F, Sun H, Huang L, Yang S, Sun SG (2013) Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery. ACS Appl Mater Interfaces 5:6316–6323CrossRefGoogle Scholar
- 20.Li CC, Yu H, Yan Q, Hng HH (2016) Nitrogen doped carbon nanotubes encapsulated MnO nanoparticles derived from metal coordination polymer towards high performance lithium-ion battery anodes. Electrochim Acta 187:406–412CrossRefGoogle Scholar
- 21.Bai T, Zhou H, Zhou X, Liao Q, Chen S, Yang J (2017) N-doped carbon-encapsulated MnO@graphene nanosheet as high-performance anode material for lithium-ion batteries. J Mater Sci 52:11608–11619CrossRefGoogle Scholar
- 22.Liu DS, Liu DH, Hou BH (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRefGoogle Scholar
- 23.Li X, Shang X, Li D, Yue H, Wang S, Qiao L, He D (2015) Facile synthesis of porous MnO microspheres for high-performance lithium-on batteries. Part Part Syst Charact 31:1001–1007CrossRefGoogle Scholar
- 24.Li K, Shua F, Guo X, Xue D (2016) High performance porous MnO@C composite anode materials for lithium-ion batteries. Electrochim Acta 188:793–800CrossRefGoogle Scholar
- 25.Su J, Liang H, Gong XN, Lv XY, Long YF, Wen YX (2017) Fast preparation of porous MnO/C microspheres as anode materials for lithium-ion batteries. Nanomaterials 7(2017):121–134CrossRefGoogle Scholar
- 26.Xu GL, Xu YF, Sun H, Fu F, Zheng XM, Huang L, Li JT, Yang SH, Sun SG (2012) Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem Commun 48:8502–8504CrossRefGoogle Scholar
- 27.Su ML, Choi SH, Lee JK, Yun CK (2014) Electrochemical properties of graphene-MnO composite and hollow-structured MnO powders prepared by a simple one-pot spray pyrolysis process. Electrochim Acta 132:441–447CrossRefGoogle Scholar
- 28.Tsung CK, Fan J, Zheng N, Shi Q, Forman AJ, Wang J, Stucky GD (2010) A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem 47:8682–8686CrossRefGoogle Scholar
- 29.Xiang ZM, Chen YX, Li J, Xia XH, He YD, Liu HB (2017) Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. J Solid State Electrochem 21:2425–2432CrossRefGoogle Scholar
- 30.Wang WZ, Xu CK, Wang GH, Liu YK, Zheng CL (2002) Preparation of smooth single-crystal Mn3O4 nanowires. Adv Mater 14:837–840CrossRefGoogle Scholar
- 31.Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in tio2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
- 32.Ong WJ, Tan LL, Ng YH, Yong SK, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem Rev 116:7159–7329CrossRefGoogle Scholar
- 33.Zheng Y, Jiao Y, Ge L, Liu J, Jaroniec M, Qiao SZ (2013) Controllable co-doping of boron and nitrogen in graphene for an enhanced synergistic catalysis effect. Angew Chem Int Ed 52:3110–3116CrossRefGoogle Scholar
- 34.Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem 53:7281–7285CrossRefGoogle Scholar
- 35.Ma TY, Ran J, Dai S, Jaroniec M, Qiao SZ (2015) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed 54:4646–4650CrossRefGoogle Scholar
- 36.Zhang Y, Chen P, Gao X, Wang B, Liu H, Wu H (2016) Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv Funct Mater 26:7754–7765CrossRefGoogle Scholar
- 37.Ong WJ, Tan LL, Chai SP, Yong ST (2015) Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem Commun 51:858–861CrossRefGoogle Scholar
- 38.Chai B, Peng T, Mao J, Li K, Zan L (2012) Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752CrossRefGoogle Scholar
- 39.Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509:26–29CrossRefGoogle Scholar
- 40.Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron 28:7784–7796CrossRefGoogle Scholar
- 41.Wang J, Liu W, Chen J, Wang H, Liu S, Chen S (2016) Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys. Electrochim Acta 188:210–217CrossRefGoogle Scholar
- 42.Eftekhari A, Mohamedi M (2017) Tailoring Pseudocapacitive materials from a mechanistic perspective. Mater Today Energy 6:211–−229CrossRefGoogle Scholar
- 43.Chao DL, Liang P, Chen Z, Bai LY, Shen H, Liu XX, Xia XH, Zhao YL, Savilov SV, Lin JY, Shen ZX (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219CrossRefGoogle Scholar
- 44.Li S, Liu HB, Chen YX (2016) Evolution of crystal structure and electrochemical performance of layered Li1.20Ti0.44Cr0.36O2/C cathode materials with cycling. Ionics 22:2291–2298CrossRefGoogle Scholar
- 45.Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J (2008) The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid-State Lett 11:170–174CrossRefGoogle Scholar
- 46.Dees D, Gunen E, Abraham D, Jansen A, Prakash J (2005) Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. J Electrochem Soc 152:1409–1417CrossRefGoogle Scholar