Advertisement

Ionics

pp 1–10 | Cite as

A LiA1Cl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte with improved electrochemical performance for Li-metal batteries

  • Ruopeng Li
  • Bo WangEmail author
  • Tiantian Gao
  • Changyuan Bao
  • Rensheng Song
  • Dianlong WangEmail author
Original Paper
  • 37 Downloads

Abstract

A LiAlCl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte was prepared by using NaAlCl4·2SO2 as the functional additive and mixing with LiAlCl4·3SO2. The obtained LiAlCl4·3SO2-NaAlCl4·2SO2 not only has good non-flammability but also exhibits improved electrochemical performance for Li-metal batteries. With the addition of NaAlCl4·2SO2, the fabricated Li/Cu cells using mixed inorganic electrolyte display higher average coulombic efficiency and more excellent cycling stability. Through scanning electron microscopy (SEM) characterization, it is demonstrated that the surficial morphology of Li-deposited layer is smoother in LiAlCl4·3SO2-NaAlCl4·2SO2 binary electrolyte system than pure LiAlCl4·3SO2. Furthermore, the fabricated Li/graphite cells using LiAlCl4·3SO2-NaAlCl4·2SO2 binary electrolyte also show higher specific capacity and better cycling stability than using pure LiAlCl4·3SO2 electrolyte as well as the conventional organic electrolyte (1 M LiPF6 in ethylene carbonate/dimethyl carbonate mixed solvent with 1:1 in volume). Consequently, LiAlCl4·3SO2-NaAlCl4·2SO2 is proposed to have great potential for the safe and high-performance Li-metal batteries.

Graphic abstract

A LiAlCl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte is prepared by using NaAlCl4·2SO2 as the functional additive and mixing with LiAlCl4·3SO2, which exhibits improved electrochemical performance for Li-metal batteries

Keywords

LiAlCl4·3SO2 NaAlCl4·2SO2 Non-flammable Dendrite inhibition Stable SEI film 

Notes

Acknowledgements

National Natural Science Foundation of China (Nos. 51874110 and 51604089), the China Postdoctoral Science Foundation (Grant Nos. 2016M601431 and 2018T110308), and the Heilongjiang Province Postdoctoral Science Foundation (Grant Nos. LBH-Z16056 and LBH-TZ1707) are acknowledged.

References

  1. 1.
    Wang B, Liu T, Liu A, Liu G, Wang L, Gao T, Wang D, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1600426CrossRefGoogle Scholar
  2. 2.
    Wang B, Al Abdulla W, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875CrossRefGoogle Scholar
  3. 3.
    Briguglio N, Siracusano S, Bonura G, Sebastián D, Aricò AS (2019) Flammability reduction in a pressurised water electrolyser based on a thin polymer electrolyte membrane through a Pt-alloy catalytic approach. Appl Catal B Environ 246:254–265CrossRefGoogle Scholar
  4. 4.
    Yi T, Zhu Y, Tao W, Luo S, Xie Y, Li X (2018) Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. J Power Sources 399:26–41CrossRefGoogle Scholar
  5. 5.
    Han X, Gui X, Yi T, Li Y, Yue C (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opinion Solid State Mater Sci 22:109–126CrossRefGoogle Scholar
  6. 6.
    Gao T, Wang B, Wang L, Liu G, Wang F, Luo H, Wang D (2018) LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries. Electrochim Acta 286:77–85CrossRefGoogle Scholar
  7. 7.
    Li X, Wang X, Shao D, Liu L, Yang L (2019) Preparation and performance of poly (ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries. J Appl Polym Sci 136:47498CrossRefGoogle Scholar
  8. 8.
    Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135:4450–4456CrossRefGoogle Scholar
  9. 9.
    Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu P, Wang J, Cheng H, Cui Y (2017) Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol 12:993–999CrossRefGoogle Scholar
  10. 10.
    Cheng X, Zhang R, Zhao C, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473CrossRefGoogle Scholar
  11. 11.
    Chen R, Zhao Y, Li Y, Ye Y, Li Y, Wu F, Chen S (2017) Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. J Mater Chem A 5:5142–5147CrossRefGoogle Scholar
  12. 12.
    Haregewoin AM, Wotango AS, Hwang B (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci 9:1955–1988.4CrossRefGoogle Scholar
  13. 13.
    Wang B, Xie Y, Liu T, Luo H, Wang B, Wang C, Wang L, Wang D, Dou S, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372CrossRefGoogle Scholar
  14. 14.
    Wang B, Xu B, Liu T, Liu P, Guo C, Wang S, Wang Q, Xiong Z, Wang D, Zhao XS (2014) Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6:986–995CrossRefGoogle Scholar
  15. 15.
    Suo L, Hu Y, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481CrossRefGoogle Scholar
  16. 16.
    Xing H, Liao C, Yang Q, Veith GM, Guo B, Sun X, Ren Q, Hu Y, Dai S (2014) Ambient lithium-SO2 batteries with ionic liquids as electrolytes. Angew Chem Int Ed 53:2099–2103CrossRefGoogle Scholar
  17. 17.
    Hu J, Wang W, Yu R, Guo M, He C, Xie X, Peng H, Xue Z (2017) Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles. RSC Adv 7:54986–54994CrossRefGoogle Scholar
  18. 18.
    Nandasiri MI, Camacho-Forero LE, Schwarz AM, Shutthanandan V (2017) In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem Mater 29:4728–4737CrossRefGoogle Scholar
  19. 19.
    Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder MA, Cresce AV, Wang F, Yang C, Hu Y, Xu K, Wang C (2017) “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv Energy Mater 7:1701189CrossRefGoogle Scholar
  20. 20.
    Fan L, Li S, Liu L, Zhang W, Gao L, Fu Y, Chen F, Li J, Zhuang HL, Lu Y (2018) Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 8:1802350CrossRefGoogle Scholar
  21. 21.
    Ota H, Shima K, Ue M, Yamaki J (2004) Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim Acta 49:565–572CrossRefGoogle Scholar
  22. 22.
    Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang C (2018) Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4:174–185CrossRefGoogle Scholar
  23. 23.
    Wang F, Borodin O, Ding MS, Gobet M, Vatamanu J, Fan X, Gao T, Eidson N, Liang Y, Sun W, Greenbaum S, Xu K, Wang C (2018) Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2:927–937CrossRefGoogle Scholar
  24. 24.
    Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G (2018) Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Mater 11:197–204CrossRefGoogle Scholar
  25. 25.
    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRefGoogle Scholar
  26. 26.
    Li S, Jiang M, Xie Y, Xu H, Jia J, Li J (2018) Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv Mater 30:1706375CrossRefGoogle Scholar
  27. 27.
    Kim A, Jung H, Song J, Kim HJ, Jeong G, Kim H (2019) Lithium-ion intercalation into graphite in SO2-based inorganic electrolyte toward high-rate-capable and safe lithium-ion batteries. ACS Appl Mater Interfaces 11:9054–9061CrossRefGoogle Scholar
  28. 28.
    Robert J, Mammone MB (1987) Electrochemical studies of Li (SO2)3AlCl4 electrolytes containing added halogens. J Electrochem Soc 134:37–40CrossRefGoogle Scholar
  29. 29.
    Song J, Chun J, Kim A, Jung H, Kim H (2018) Dendrite-free Li metal anode for rechargeable Li–SO2 batteries employing surface modification with a NaAlCl4–2SO2 electrolyte. ACS Appl Mater Interfaces 10:34699–34705CrossRefGoogle Scholar
  30. 30.
    Komaba S, Itabashi T, Kaplan B, Groult H, Kumagai N (2003) Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive. Electrochem Commun 5:962–966CrossRefGoogle Scholar
  31. 31.
    Park CW, Seung MO (1997) Performances of Li/LiCoO2 cells in LiA1C14·3SO2 electrolyte. J Power Sources 68:338–343CrossRefGoogle Scholar
  32. 32.
    Nicholas G, Charles A, John BG (2018) Communication-characterization of LiA1C14 center dot xSO2 inorganic liquid Li+ electrolyte. J Electrochem Soc 165:A1694–A1696CrossRefGoogle Scholar
  33. 33.
    Yim T, Jeong G, Han Y, Kim Y (2016) Size effect of SO2 receptors on the energy efficiency of Na-SO2 batteries: gallium-based inorganic electrolytes. RSC Adv 6:1515–1519CrossRefGoogle Scholar
  34. 34.
    Hartl R, Fleischmann M, Gschwind R, Winter M, Gores H (2013) A liquid inorganic electrolyte showing an unusually high lithium ion transference number: a concentrated solution of LiAlCl4 in sulfur dioxide. Energies 6:4448–4464CrossRefGoogle Scholar
  35. 35.
    Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G (2017) A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces 9:17897–17905CrossRefGoogle Scholar
  36. 36.
    Zhang X, Cheng X, Chen X, Yan C, Zhang Q, Zhang X, Cheng X, Chen X, Yan C, Zhang Q (2017) Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 27:1605989CrossRefGoogle Scholar
  37. 37.
    Ha J, Park S, Yu S, Jin A, Jang B, Bong S, Kim I, Sung Y, Piao Y (2013) A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries. Nanoscale 5:8647–8655CrossRefGoogle Scholar
  38. 38.
    Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ionics 300:78–85CrossRefGoogle Scholar
  39. 39.
    Yan C, Cheng X-B, Zhao C-Z, Huang J-Q, Yang S-T, Zhang Q (2016) Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: the role of polysulfides on lithium anode. J Power Sources 327:212–220CrossRefGoogle Scholar
  40. 40.
    Stark JK, Ding Y, Kohl PA (2011) Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J Electrochem Soc 158:A1100CrossRefGoogle Scholar
  41. 41.
    Goojin J, Hansu K, Hyo S, Young K, Jong H, Jae H, Juhye S, Keonjoon L, Taeeun Y, Ki J, Hyukjae L, Young-Jun K, Hun-Joon S (2015) A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte. Sci Rep 5:12827CrossRefGoogle Scholar
  42. 42.
    Song R, Wang B, Xie Y, Ruan T, Wang F, Yuan Y, Wang D, Dou S (2018) A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries. J Mater Chem A 6:17967–17976CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations