Advertisement

Ionics

pp 1–13 | Cite as

Promising high-conductivity Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes: the effect of crystallization temperature on the microstructure and transport properties

  • S. V. PershinaEmail author
  • A. A. Pankratov
  • E. G. Vovkotrub
  • B. D. Antonov
Original Paper
  • 14 Downloads

Abstract

High-conductivity NASICON-type solid electrolytes of Li1.5Al0.5Ge1.5(PO4)3 composition have been obtained through glass crystallization. Thermal behavior of the precursor glass has been investigated; glass transition and crystallization temperatures have been determined by DSC. The influence of glass crystallization temperature (750, 800, 820, and 850 °C) on the phase composition, microstructure, molecular structure, and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass-ceramics has been studied. It was found that the optimum crystallization temperature for obtaining an electrolyte with the highest conductivity (0.39 mS cm−1 at 25 °C) is 820 °C.

Keywords

All-solid-state lithium batteries Glass-ceramics NASICON-type structure Li1.5Al0.5Ge1.5(PO4)3 Ionic conductivities Raman spectroscopy 

Notes

Acknowledgements

Crystallization kinetics researches are performed within the framework of the budgetary plans of the Institute of High Temperature Electrochemistry. The characterization of materials was carried out at the Shared Access Centre “Composition of Compounds” of the Institute of High Temperature Electrochemistry of the Ural Branch of the RAS, Yekaterinburg, Russian Federation [43].

Funding information

The reported study was funded by the Russian Science Foundation according to the research project no. 18-73-00099.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts to declare.

References

  1. 1.
    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886CrossRefGoogle Scholar
  2. 2.
    Kitaura H, Zhou H (2012) Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy Environ Sci 5:9077–9084CrossRefGoogle Scholar
  3. 3.
    Meesala Y, Jena A, Chang H, Liu R-S (2017) Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett 2:2734–2751CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Shao Y, Lotsch B, Hu Y-S, Li H, Janek J, Nazar LF, Nan C-W, Maier J, Armand M, Chen L (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11:1945–1976CrossRefGoogle Scholar
  5. 5.
    Chandrashekar S, Trease NM, Chang HJ, Du L-S, Grey CP, Jerschow A (2012) 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater 11:311–315CrossRefGoogle Scholar
  6. 6.
    Ma C, Chen K, Liang C, Nan C-W, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7:1638–1642CrossRefGoogle Scholar
  7. 7.
    Adachi G, Imanaka N, Tamura S (2002) Ionic conducting lanthanide oxides. Chem Rev 102(6):2405–2430CrossRefGoogle Scholar
  8. 8.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781CrossRefGoogle Scholar
  9. 9.
    Qin S, Zhu X, Jiang Y, Ling M, Hu Z, Zhu J (2018) Extremely dense microstructure and enhanced ionic conductivity in hot-isostatic pressing treated cubic garnet-type solid electrolyte of Ga2O3-doped Li7La3Zr2O12. Funct Mater Lett 11(2):1850029–1–1850029–4CrossRefGoogle Scholar
  10. 10.
    Pershina SV, Il'Ina EA, Reznitskikh OG (2017) Phase composition, density, and ionic conductivity of the Li7La3Zr2O12-based composites with LiPO3 glass addition. ACS Inorg Chem 56(16):9880–9891CrossRefGoogle Scholar
  11. 11.
    Arbi K, París M, Sanz J (2011) Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy. Dalton Trans 40:10195–10202CrossRefGoogle Scholar
  12. 12.
    París MA, Sanz J (1997) Structural changes in the compounds LiMIV 2(PO4)3 (MIV = Ge, Ti, Sn, and Hf) as followed by 31P and 7Li NMR. Phys Rev B: Condens Matter Mater Phys 55:14270–14278CrossRefGoogle Scholar
  13. 13.
    Weiss M, Weber DA, Senyshyn A, Janek J, Zeier WG (2018) Correlating transport and structural properties in Li1+xAlxGe2–x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl Mater Interfaces 10:10935–10944CrossRefGoogle Scholar
  14. 14.
    Alami M, Brochu R, Soubeyroux J, Gravereau P, Le Flem G, Hagenmuller P (1991) Structure and thermal expansion of LiGe2(PO4)3. J Solid State Chem 90:185–193CrossRefGoogle Scholar
  15. 15.
    Losilla ER, Aranda MA, Martínez-Lara M, Bruque S (1997) Reversible triclinic-rhombohedral phase transition in LiHf2(PO4)3: crystal structures from neutron powder diffraction. Chem Mater 9(7):1678–1685CrossRefGoogle Scholar
  16. 16.
    Catti M, Stramare S, Ibberson R (1999) Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α′-LiZr2(PO4)3. Solid State Ionics 123:173–180CrossRefGoogle Scholar
  17. 17.
    Leo CJ, Chowdari BVR, Subba Rao GV, Souquet JL (2002) Lithium conducting glass ceramic with Nasicon structure. Mater Res Bull 37(8):1419–1430CrossRefGoogle Scholar
  18. 18.
    Xu X, Wen Z, Wu X, Yang X, Gu Z (2007) Lithium ion conducting glass–ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with good electrical and electrochemical properties. J Am Ceram Soc 90(9):2802–2806CrossRefGoogle Scholar
  19. 19.
    Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair KR, Li R, Zhang C, Liu J, Kuo L-Y, Hu Y, Sham T-K, Zhang L, Yang R, Lu S, Song X, Sun X (2018) Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl Mater Interfaces 10(37):31240–31248CrossRefGoogle Scholar
  20. 20.
    Fu J (1997) Fast Li ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ionics 104:191–194CrossRefGoogle Scholar
  21. 21.
    Li S-C, Cai J-Y, Lin ZX (1988) Phase relationships and electrical conductivity of Li1+xGe2-xAlxP3O12 and Li1+xGe2-xCrxP3O12 systems. Solid State Ionics 28-30:1265–1270CrossRefGoogle Scholar
  22. 22.
    Kun H, Yanhang W, Chengkui Z, Yonghua L, Huifeng Z, Jiang C, Bin H, Juanrong M (2013) High-temperature X-ray analysis of phase evolution in lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. Mater Charact 80:86–91CrossRefGoogle Scholar
  23. 23.
    Kotobuki M, Koishi M (2015) Sol–gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. Ceram Int 41(7):8562–8567CrossRefGoogle Scholar
  24. 24.
    Thokchom JS, Kuma B (2008) Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic. J Power Sources 185(1):480–485CrossRefGoogle Scholar
  25. 25.
    Thokchom JS, Kumar B (2010) The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J Power Sources 195(9):2870–2876CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Zhang Y, Lu L (2015) Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic. J Power Sources 290:123–129CrossRefGoogle Scholar
  27. 27.
    Mariappan CR, Yada C, Rosciano F, Roling B (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196(15):6456–6464CrossRefGoogle Scholar
  28. 28.
    Kotobuki M, Hanc E, Yan B, Molenda J, Lu L (2017) Preparation and characterization of Ba-substituted Li1+xAlxGe2−x(PO4)3 (x = 0.5) solid electrolyte. Ceram Int 43(15):12616–12622CrossRefGoogle Scholar
  29. 29.
    Safanama D, Sharma N, Rao RP, Brand HEA, Adams S (2016) Structural evolution of NASICON-type Li1+xAlxGe2−x(PO4)3 using in situ synchrotron X-ray powder diffraction. J Mater Chem A 4:7718–7726CrossRefGoogle Scholar
  30. 30.
    Feng JK, Lu L, Lai MO (2010) Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J Alloys Compounds 501(2):255–258CrossRefGoogle Scholar
  31. 31.
    Cruz AM, Ferreira EB, Rodrigues ACM (2009) Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass–ceramic. J Non-Cryst Solids 355(45–47):2295–2301CrossRefGoogle Scholar
  32. 32.
    Thokchom JS, Kumar B (2007) Water durable lithium ion conducting composite membranes from the Li2O–Al2O3–TiO2–P2O5 glass-ceramic. J Electrochem Soc 154(4):A331–A336CrossRefGoogle Scholar
  33. 33.
    Cretin M, Fabry P (1997) Comparative study of lithium ion conductors in the system Li1+xAlxA2−x IV(PO4)3 with AIV = Ti or Ge and 0 ≤ x ≤ 0.7 for use as Li+ sensitive membranes. J Eur Ceram Soc 19(16):2931–2940CrossRefGoogle Scholar
  34. 34.
    Rodrigues AM, Narváez-Semanate JL, Cabral AA, Rodrigues ACM (2013) Determination of crystallization kinetics parameters of a Li1.5Al0.5Ge1.5(PO4)3 (LAGP) glass by differential scanning calorimetry. Mater Res 16(4):811–816CrossRefGoogle Scholar
  35. 35.
    Kun H, Yanhang W, Chengkui Z, Huifeng Z, Yonghua L, Jiang C, Bin H, Juanrong M (2011) Influence of Al2O3 additions on crystallization mechanism and conductivity of Li2O–Ge2O–P2O5 glass–ceramics. Physica B 406:3947–3950CrossRefGoogle Scholar
  36. 36.
    Francisco BE, Stoldt CR, M’Peko J-C (2014) Lithium-ion trapping from local structural distortions in sodium super ionic conductor (NASICON) electrolytes. Chem Mater 26(16):4741–4749CrossRefGoogle Scholar
  37. 37.
    Tarte P, Rulmont A, Merckaert-Ansay C (1986) Vibrational spectrum of nasicon-like, rhombohedral orthophosphates MIMIV 2(PO4)3. Spectrochim Acta, Part A 42(9):1009–1016CrossRefGoogle Scholar
  38. 38.
    Kotobuki M, Koishi M (2014) Preparation of Li7La3Zr2O12 solid electrolyte via a sol–gel method. Ceram Int 40(3):5043–5047CrossRefGoogle Scholar
  39. 39.
    Murugan R, Thangadurai V, Weppner W (2008) Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2). Appl Phys A Mater Sci Process 91(4):615–620CrossRefGoogle Scholar
  40. 40.
    Murugan R, Weppner W, Schmid-Beurmann P, Thangadurai V (2007) Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Mater Sci Eng B 143(1–3):14–20CrossRefGoogle Scholar
  41. 41.
    Yan B, Zhu Y, Pan F, Liu J, Lu L (2015) Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing. Solid State Ionics 278:65–68CrossRefGoogle Scholar
  42. 42.
    Kubanska A, Castro L, Tortet L, Schaf O, Dolle M, Bouchet R (2014) Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Solid State Ionics 266:44–55CrossRefGoogle Scholar
  43. 43.
    Equipment. Shared Access Center. Available online: http://www.ihte.uran.ru/?page_id=3154 (accessed on 11 April 2019)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Pershina
    • 1
    Email author
  • A. A. Pankratov
    • 1
  • E. G. Vovkotrub
    • 1
  • B. D. Antonov
    • 1
  1. 1.Institute of High-Temperature Electrochemistry UB RASYekaterinburgRussian Federation

Personalised recommendations