Advertisement

Ionics

, Volume 25, Issue 9, pp 4499–4507 | Cite as

Simple synthesis route of glycine-assisted PANi-NiCo2O4 porous powder for electrochemical application

  • M. Sathish Kumar
  • K. Yamini Yasoda
  • Nikhil K. KothurkarEmail author
  • Sudip K. BatabyalEmail author
Original Paper
  • 114 Downloads

Abstract

Glycine-assisted polyaniline-NiCo2O4 composite porous powder was synthesized by a simple chemical method. The FT-IR and UV-visible spectroscopy analysis confirmed the presence of the corresponding functional groups. Scanning electron microscopy revealed the porous morphology of NiCo2O4 and a brush-like morphology of PANi-NiCo2O4 composite which helps in enhancing the electrochemical performance of the composite. The X-ray diffraction pattern indicates the spinel crystal phase of NiCo2O4 in the synthesized sample. Cyclic voltammetry and impedance analysis were done to understand the electrochemical performance of the material. The specific capacitance calculated by galvanostatic charge-discharge method was found to be 687.5 F/g for PANi-NiCo2O4, whereas for NiCo2O4 and pure PANi, it was 458.5 F/g and 373.75 F/g respectively. Cyclic stability analysis showed 88% retention of specific capacitance over 1000 cycles for the as-synthesized PANi-NiCo2O4 sample.

Keywords

Polyaniline NiCo2O4 Cyclic voltammetry Supercapacitor Porous polymer composite Glycine 

Notes

Acknowledgments

The authors thank the Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST) (research grant ECR/2015/000208) and the Department of Science and Technology (DST) for research grant DST/INT/RFBR/P-241.

Supplementary material

11581_2019_3011_MOESM1_ESM.pdf (314 kb)
ESM 1 (PDF 313 kb)

References

  1. 1.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  2. 2.
    Zhang G, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high performance supercapacitors. Sci Rep 3:1470CrossRefGoogle Scholar
  3. 3.
    Wu FS, Wang XH, Zheng WR, Gao HW, Hao C, Ge CW (2017) Synthesis and characterization of hierarchical Bi2MoO6/polyaniline nanocomposite for all solid state asymmetric supercapacitor. Electrochim Acta 245: 685–695Google Scholar
  4. 4.
    Wang B, Maci’a-Agull JA, Prendiville DG, Zheng X, Liu D, Zhang Y, Boettcher SW, Ji X, Stucky GD (2014) A hybrid redox-supercapacitor system with anionic catholyte and cationic anolyte. J Electrochem Soc 161(6):A1090–A1093CrossRefGoogle Scholar
  5. 5.
    Wang B, Chen JS, Wang Z, Madhavi S, Lou XW (2012) Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv Energy Mater 2:1188–1192CrossRefGoogle Scholar
  6. 6.
    Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234CrossRefGoogle Scholar
  7. 7.
    Ho MY, Khiew PS, Isa D, Tan TK, Chiu WS, Chia CH (2014) A review of metal oxide composite electrode materials for electrochemical capacitors. Nano: Brief Rep Rev 9(6):1430002–1430027CrossRefGoogle Scholar
  8. 8.
    Sharma V, Singh I, Chandra A (2018) Hollow nanostructures of metal oxides as next-generation electrode materials for supercapacitors. Sci Rep 8:1307CrossRefGoogle Scholar
  9. 9.
    Yuan C, Wu H, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53:1488–1504CrossRefGoogle Scholar
  10. 10.
    Zheng Y, Liu Z, Chen W, Liang B, Du H, Yang R, He X, tang Z, Gui X (2017) Flexible, sandwich-like CNTs/NiCo2O4 hybrid paper electrodes for all solid state supercapacitors. J Mater Chem A 5:5886–5894CrossRefGoogle Scholar
  11. 11.
    Zhou S, Hao C, Wang J, Wang X, Gao H (2018) Metal-organic framework templated synthesis of porous NiCo2O4/ZnCo2O4/Co3O4 hollow polyhedral nanocages and their enhanced pseudocapacitive properties. Chem Eng J 351:74–84CrossRefGoogle Scholar
  12. 12.
    Wang B, Zhu T, Wu HB, Xu R, Chen JS, Lou XW (2012) Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)0.11H2O nanowires with improved supercapacitive properties. Nanoscale 4:2145–2149CrossRefGoogle Scholar
  13. 13.
    Wu Z, Zhu Y, Ji X (2014) A NiCo2O4-based materials for electrochemical supercapacitor. J Mater Chem:14759–14772Google Scholar
  14. 14.
    Huang L, Chen D, Ding Y, Feng S, Wang Z, Liu M (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett:3135–3139Google Scholar
  15. 15.
    Hao C, Zhou S, Wang J, Wang X, Gao H, Ge C (2018) Preparation of hierarchical spinel NiCo2O4 nanowires for high performance supercapacitors. J Ind Eng Chem Res 57:2517–2525CrossRefGoogle Scholar
  16. 16.
    Deng F, Yu L, Cheng G, Lin T, Sun M, Ye F, Li Y (2014) Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. J Power Sources 251:202–207CrossRefGoogle Scholar
  17. 17.
    Huang L, Chen D, Ding Y, Feng S, Wang Z, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitor. Nano Lett 13:3135–3139CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Wang J, Wu Z, Jing M, Hou H, Jia X, Ji X (2015) An electrochemical exploration of hollow NiCo2O4 sub-microspheres and its capacitive performances. J Power Sources 287:307–315CrossRefGoogle Scholar
  19. 19.
    Wu H, Pang H, Lou X (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6:3619–3626CrossRefGoogle Scholar
  20. 20.
    Zhang JN, Liu P, Jin C, Jin LN, Bian SW, Zhu Q, Wang B (2017) Flexible three-dimensional carbon cloth/carbon fibers/NiCo2O4 composite electrode materials for high performance all solid-state electrochemical capacitors. Electrochim Acta 256:90–99CrossRefGoogle Scholar
  21. 21.
    You Y, Zheng M, Jiang D, Li F, Yuan H, Zhai Z, Ma L, Shen W (2018) Boosting supercapacitive performance of ultrathin mesoporous NiCo2O4 nanosheets arrays by surface sulfation. J Mater Chem A 6:8742CrossRefGoogle Scholar
  22. 22.
    Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5:7405–7409CrossRefGoogle Scholar
  23. 23.
    Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438CrossRefGoogle Scholar
  24. 24.
    Guo G, Wu HB, Ding S, Liu LM, Lou XW (2015) Hierarchichal NiCo2O4 nanosheets grown on Ni nanoform as high performance electrodes for supercapacitors. Small. 11:804–808CrossRefGoogle Scholar
  25. 25.
    Zhang C, Geng X, Tang S, Deng M, Du Y (2017) NiCo2O4@rGO hybrid nanostructures on Ni foam as high performance supercapacitor electrodes. J Mater Chem A 5:5912–5919CrossRefGoogle Scholar
  26. 26.
    Patra S, Munichandraiah N (2007) Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J Appl Polym Sci 106:1160–1171CrossRefGoogle Scholar
  27. 27.
    Kumar MS, Yasoda KY, Batabyal SK, Kothurkar NK (2018) Carbon-polyaniline nanocomposites as supercapacitor materials. Mater Res Express 5:045505Google Scholar
  28. 28.
    Gao H, Wang X, Wang G, Hao C, Zhou S, Huang C (2018) Urchin like MgCo2O4@PPy core-shell composite grown on Ni foam for a high performance all solid state asymmetric supercapacitor. Nanoscale. 10:10190–10202CrossRefGoogle Scholar
  29. 29.
    Ramana GV, Srikanth VVSS (2014) Polyaniline nanostructures expedient as working electrode materials in supercapacitors. Applied Physics A 115(1):189CrossRefGoogle Scholar
  30. 30.
    Gao H, Wu F, Wang X, Hao C, Ge C (2018) Preparation of NiMoO4-PANi core shell nanocomposite for the high performance all solid state asymmetric supercapacitor. Int J Hydrog Energy 43:18349–18362CrossRefGoogle Scholar
  31. 31.
    Jelmy EJ, Ramakrishnan S, Rangarajan M, Kothurkar NK (2013) Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites. Bull Mater Sci 36:37–44CrossRefGoogle Scholar
  32. 32.
    Mathew J, Kumar MS, Kothurkar NK, Kumar RS, Narayanan BS (2018) Polyaniline/Fe3O4-rGO nanocomposites for microwave absorption IOP conf Series. Mater Sci Eng 310:012138Google Scholar
  33. 33.
    Silva CH, Galiote NA, Huguenin F, Teixeira-Neto E, Constantino VR, Temperini ML (2012) Spectroscopic morphological and electrochromic characterization of layer-by-layer hybrid films of polyaniline and hexaniobate nanoscrolls. J Mater Chem 22:14052–14060CrossRefGoogle Scholar
  34. 34.
    Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofibers as high-performance supercapacitor electrode materials. Chem Commun 51:12365–12368CrossRefGoogle Scholar
  35. 35.
    Shankar KV, Selvan RK (2015) The ternary MnFe2O4/graphene/polyaniline hybrid composite as the negative electrode for supercapacitors. J Power Sources 275:399–407CrossRefGoogle Scholar
  36. 36.
    Xie K, Zhang M, Yang Y, Zhao L, Qi W (2018) Synthesis and supercapacitor performance of polyaniline/nitrogen-doped ordered mesoporous carbon composites. Nanoscale Res Lett 13:163CrossRefGoogle Scholar
  37. 37.
    Elanthamilan E, Sathiyan A, Rajkumar S, Sheryl EJ, Merlin JP (2018) Polyaniline based charcoal/Ni nanocomposite material for high-performance supercapacitor. Sustain Energy Fuels 2:811–819CrossRefGoogle Scholar
  38. 38.
    Xu H, Wu JX, Chen Y, Zhang JL, Zhang BQ (2015) Facile synthesis of polyaniline/NiCo2O4 nanocomposites with enhanced electrochemical properties for supercapacitors. Ionics. 21:2615–2622CrossRefGoogle Scholar
  39. 39.
    Huang L, Zhang W, Xiang J, Huang Y (2016) Porous NiCo2O4/C nanofibers replicated by cotton template as high-rate electrode materials for supercapacitors. J Mater 2:248–255Google Scholar
  40. 40.
    Tang Y, Liu Y, Yu S, Guo W, Mu S, Wang H, Zhao Y, Hou L, Fan Y, Gao F (2015) Template-free hydrothermal synthesis of nickel cobalt hydroxide nanoflowers with high performance for asymmetric supercapacitor. Electrochim Acta 161:279–289CrossRefGoogle Scholar
  41. 41.
    Chayasombat B, Yordsri V, Oikawa T, Thanachayanont C (2015) Microstructural characterization of nickel hydroxide films deposited using an ammonia-induced method and subsequently calcined nickel oxide films. Mater Sci Semicond Process 34:224–229CrossRefGoogle Scholar
  42. 42.
    Li Y, Wu X, Wang S, Wang W, Xiang Y, Dai C, Liu Z, He Z, Wu X (2017) Surfactant assisted solvothermal synthesis of NiCo2O4 as an anode for lithium ion batteries. RSC Adv 7:36909–36916CrossRefGoogle Scholar
  43. 43.
    Yasoda KY, Mikhaylov AA, Medvedev AG, Kumar MS, Lev O, Prikhodchenko PV, Batabyal SK (2019) Brush like polyaniline on vanadium oxide decorated graphene oxide: efficient electrode materials for supercapacitors. J Energy Storage 22:188–193CrossRefGoogle Scholar
  44. 44.
    Liu D, Wang X, Deng J, Zhou C, Guo J, Liu P (2015) Crosslinked carbon nanotubes/polyaniline composites as a pseudocapacitive material with high cycling stability. Nanomaterials. 5:1034–1047CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, CoimbatoreAmrita Vishwa VidyapeethamCoimbatoreIndia
  2. 2.Department of Chemical Engineering and Materials Science, Amrita School of Engineering, CoimbatoreAmrita Vishwa VidyapeethamCoimbatoreIndia
  3. 3.Amrita Center for Industrial Research & Innovation (ACIRI), Amrita School of Engineering, CoimbatoreAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations