Skip to main content

Advertisement

Log in

An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sodium metal chloride batteries possessing many merits, such as high energy density and long cycle life, are usually operated above 300 °C. Such high operating temperature may accelerate corrosion and aging, increase operating complexity, require an extra thermal management system, and limit their widespread applications. Lowering the working temperature may alleviate these issues and broaden their usage. Herein, a sodium copper chloride battery running at 175 °C is designed with the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide dissolved with sodium trifluoromethanesulfonate, to replace sodium chloride saturated sodium tetrachloroaluminate as the catholyte. The cathode delivers the high specific capacity of 141.4 mAh g−1 and the high energy density of 374.7 Wh kg−1. In addition, the capacity retention reaches 92.1% after 50 cycles with an average coulombic efficiency as high as 99.6%. The examination of the cathode and solid electrolyte collected after 50 cycles shows that the degradation mechanism of the battery is attributed to (1) the accumulation of a large amount of non-conductive copper chloride in the three dimensional network structure of the copper foam and (2) the loss of β″-alumina in the solid electrolyte during the charge/discharge process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Coetzer J (1986) A new high energy density battery system. J Power Sources 18:377–380. https://doi.org/10.1016/0378-7753(86)80093-3

    Article  CAS  Google Scholar 

  2. Sudworth JL (1994) Zebra batteries. J Power Sources 51:105–114. https://doi.org/10.1016/0378-7753(94)01967-3

    Article  CAS  Google Scholar 

  3. Cleaver B, Cleaver DJ, Littlewood L, Demott DS (1995) Reversible and irreversible heat effects in ZEBRA cell. J Appl Electrochem 25:1128–1132. https://doi.org/10.1007/BF00242540

    Article  CAS  Google Scholar 

  4. Prakash J, Redey L, Vissers DR (2000) Dynamic performance measurements of Na/NiCl2 cells for electric vehicle applications. J Power Sources 87:195–200. https://doi.org/10.1016/S0378-7753(99)00473-5

    Article  CAS  Google Scholar 

  5. Steinbock L, Dustmann CH (2001) Investigation of the inner structures of ZEBRA cells with a microtomograph. J Electrochem Soc 148:A132–A136. https://doi.org/10.1149/1.1341240

    Article  CAS  Google Scholar 

  6. Dustmann CH (2004) Advances in ZEBRA batteries. J Power Sources 127:85–92. https://doi.org/10.1016/j.jpowsour.2003.09.039

    Article  CAS  Google Scholar 

  7. Brett DJL, Aguiar P, Brandon NP, Bull RN, Galloway RC, Hayes GW, Lillie K, Mellors C, Smith C, Tilley AR (2006) Concept and system design for a ZEBRA battery-intermediate temperature soild oxide fuel cell hybrid vehicle. J Power Sources 157:782–798. https://doi.org/10.1016/j.jpowsour.2005.12.054

    Article  CAS  Google Scholar 

  8. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901. https://doi.org/10.1039/C2EE02781J

    Article  CAS  Google Scholar 

  9. Ao X, Wen Z, Hu Y, Wu T, Wu X, He Q (2017) Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer. J Power Sources 340:411–418. https://doi.org/10.1016/j.jpowsour.2016.11.091

    Article  CAS  Google Scholar 

  10. Ao X, Wen Z, Wu X, Wu T, Wu M (2017) Self-repairing function of Ni3S2 layer on Ni particles in the Na/NiCl2 cells with the addition of sulfur in the catholyte. ACS Appl Mater Interfaces 9:21234–21242. https://doi.org/10.1021/acsami.7b03873

    Article  CAS  PubMed  Google Scholar 

  11. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  12. Wu Y, Zeng R, Nan J, Shu D, Qiu Y, Chou SL (2017) Quinone electrode materials for rechargeable lithium/sodium ion batteries. Adv Energy Mater 7:1700278. https://doi.org/10.1002/aenm.201700278

    Article  CAS  Google Scholar 

  13. Chen X, Wu Y, Huang Z, Yang X, Li W, Yu LC, Zeng R, Luo Y, Chou SL (2016) C10H4O2S2/graphene composite as a cathode material for sodium-ion batteries. J Mater Chem A 4:18409–18415. https://doi.org/10.1039/C6TA05853A

    Article  CAS  Google Scholar 

  14. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  15. Lu X, Coffey G, Meinhardt K et al (2010) High power planar sodium-nickel chloride battery. ECS Trans 28:7–13. https://doi.org/10.1149/1.3492326

    Article  CAS  Google Scholar 

  16. Chang HJ, Canfield NL, Jung K, Sprenkle VL, Li G (2017) Advanced Na-NiCl2 battery using nickel-coated graphite with core–shell microarchitecture. ACS Appl Mater Interfaces 9:11609–11614. https://doi.org/10.1021/acsami.7b00271

    Article  CAS  PubMed  Google Scholar 

  17. Chang HJ, Lu X, Bonnett JF, Canfield NL, Son S, Park YC, Jung K, Sprenkle VL, Li G (2018) “Ni-Less” cathodes for high energy density, intermediate temperature Na–NiCl2 batteries. Adv Mater Interfaces 5:1701592. https://doi.org/10.1002/admi.201701592

    Article  CAS  Google Scholar 

  18. Li G, Lu X, Coyle CA, Kim JY, Lemmon JP, Sprenkle VL, Yang Z (2012) Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries. J Power Sources 220:193–198. https://doi.org/10.1016/j.jpowsour.2012.07.089

    Article  CAS  Google Scholar 

  19. Lu X, Li G, Kim JY, Lemmon JP, Sprenkle VL, Yang Z (2013) A novel low-cost sodium-zinc chloride battery. Energy Environ Sci 6:1837–1843. https://doi.org/10.1039/c3ee24244g

    Article  CAS  Google Scholar 

  20. Lu X, Chang HJ, Bonnett JF, Canfield NL, Jung K, Sprenkle VL, Li G (2018) An intermediate-temperature high-performance Na-ZnCl2 battery. ACS Omega 3:15702–15708. https://doi.org/10.1021/acsomega.8b02112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li G, Lu X, Kim JY, Viswanathan VV, Meinhardt KD, Engelhard MH, Sprenkle VL (2015) An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application. Adv Energy Mater 5:1–7. https://doi.org/10.1002/aenm.201500357

    Article  CAS  Google Scholar 

  22. Che H, Chen S, Xie Y, Wang H, Amine K, Liao XZ, Ma ZF (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10:1075–1101. https://doi.org/10.1039/C7EE00524E

    Article  CAS  Google Scholar 

  23. Yang LP, Liu XM, Zhang YW, Yang H, Shen XD (2014) Advanced intermediate temperature sodium copper chloride battery. J Power Sources 272:987–990. https://doi.org/10.1016/j.jpowsour.2014.09.014

    Article  CAS  Google Scholar 

  24. Park SH, Moore CW, Kohl PA, Winnick J (2001) A study of copper as a cathode material for ambient temperature sodium ion battery. J Electrochem Soc 148:A1346. https://doi.org/10.1149/1.1413479

    Article  CAS  Google Scholar 

  25. Ratnakumar BV, Stefano SD, Halpert G (1990) Electrochemistry of metal chloride cathodes in sodium batteries. J Electrochem Soc 137:2991–2997. https://doi.org/10.1149/1.2086147

    Article  CAS  Google Scholar 

  26. Chen PY, Sun IW (1999) Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt. Electrochim Acta 45:441–450. https://doi.org/10.1016/S0013-4686(99)00275-3

    Article  CAS  Google Scholar 

  27. Pye S, Winnick J, Kohl PA (1997) Iron, copper, and nickel behavior in buffered, neutral aluminum chloride: 1-Methyl-3-ethylimidazolium chloride molten salt. J Electrochem Soc 144:1933. https://doi.org/10.1149/1.1837724

    Article  CAS  Google Scholar 

  28. Monti D, Jónsson E, Palacín MR, Johansson P (2014) Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J Power Sources 245:630–636. https://doi.org/10.1016/j.jpowsour.2013.06.153

    Article  CAS  Google Scholar 

  29. He F, Wang J, Deng D (2011) Effect of Bi2O3 on structure and wetting studies of Bi2O3-ZnO-B2O3 glasses. J Alloys Compd 509:6332–6336. https://doi.org/10.1016/j.jallcom.2011.03.087

    Article  CAS  Google Scholar 

  30. Li G, Lu X, Kim JY, Lemmon JP, Sprenkle VL (2014) Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175°C. J Power Sources 249:414–417. https://doi.org/10.1016/j.jpowsour.2013.10.110

    Article  CAS  Google Scholar 

  31. Wu F, Zhu N, Bai Y, Liu L, Zhou H, Wu C (2016) Highly safe ionic liquid electrolytes for sodium-ion battery: wide electrochemical window and good thermal stability. ACS Appl Mater Interfaces 8:21383–21384. https://doi.org/10.1021/acsami.6b07054

    Article  CAS  Google Scholar 

  32. Balo L, Shalu GH, Kumar Singh V, Kumar Singh R (2017) Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochim Acta 230:126–131. https://doi.org/10.1016/j.electacta.2017.01.177

  33. Lu X, Li G, Kim JY, Lemmon JP, Sprenkle VL, Yang Z (2012) The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries. J Power Sources 215:288–295. https://doi.org/10.1016/j.jpowsour.2012.05.020

    Article  CAS  Google Scholar 

  34. Wu T, Zhang S, Ao X, Wu X, Yang J, Wen Z (2017) Enhanced stability performance of nickel nanowire with 3D conducting network for planar sodium-nickel chloride batteries. J Power Sources 360:345–352. https://doi.org/10.1016/j.jpowsour.2017.06.015

    Article  CAS  Google Scholar 

  35. Prakash J, Redey L, Vissers DR (1999) Morphological considerations of the nickel chloride electrodes for ZEBRA batteries. J Power Sources 84:63–69. https://doi.org/10.1016/s0378-7753(99)00300-6

    Article  CAS  Google Scholar 

  36. Kim M, Ahn CW, Hahn BD, Jung K, Park YC, Cho NU, Lee H, Choi JH (2017) Effects of Ni particle morphology on cell performance of Na/NiCl2 battery. Met Mater Int 23:1234–1240. https://doi.org/10.1007/s12540-017-7062-5

    Article  CAS  Google Scholar 

  37. Li G, Lu X, Kim JY, Lemmon JP, Sprenkle VL (2013) Cell degradation of a Na-NiCl2 (ZEBRA) battery. J Mater Chem A 1:14935–14942. https://doi.org/10.1039/c3ta13644b

    Article  CAS  Google Scholar 

  38. Bones RJ, Teagle DA, Brooker SD, Cullen FL (1989) Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc 30:1274–1277. https://doi.org/10.1002/chin.198937021

  39. Hosseinifar M, Petric A (2012) High temperature versus low temperature zebra (Na/NiCl2) cell performance. J Power Sources 206:402–408. https://doi.org/10.1016/j.jpowsour.2012.01.125

    Article  CAS  Google Scholar 

  40. Pekarsky A, Nicholson PS (1980) The relative stability of spray-frozen/freeze-dried β″-Al2O3 powders. Mater Res Bull 15:1517–1524. https://doi.org/10.1016/0025-5408(80)90111-7

    Article  CAS  Google Scholar 

  41. Shan SJ, Yang LP, Liu XM, Wei XL, Yang H, Shen XD (2013) Preparation and characterization of TiO2 doped and MgO stabilized Na–β″-Al2O3, electrolyte via a citrate sol–gel method. J Alloys Compd 563:176–179. https://doi.org/10.1016/j.jallcom.2013.02.092

    Article  CAS  Google Scholar 

  42. Wang J, Jiang XP, Wei XL, Yang H, Shen XD (2010) Synthesis of Na-β″Al2O3 electrolytes by microwave sintering precursors derived from the sol–gel method. J Alloys Compd 497:295–299. https://doi.org/10.1016/j.jallcom.2010.03.038

    Article  CAS  Google Scholar 

  43. Wei X, Cao Y, Lu L, Yang H, Shen X (2011) Synthesis and characterization of titanium doped sodium beta″-alumina. J Alloys Compd 509:6222–6226. https://doi.org/10.1016/j.jallcom.2011.03.006

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21573109, 21206069), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX170295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Zhang, Y., Ma, S. et al. An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism. Ionics 25, 4189–4196 (2019). https://doi.org/10.1007/s11581-019-03003-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03003-7

Keywords

Navigation