Advertisement

Ionics

, Volume 25, Issue 9, pp 4099–4107 | Cite as

One-pot synthesis of Ag-decorated pomegranate seed-like Fe3O4 composite for high-performance lithium-ion battery

  • Xue Zhang
  • Zhong-Bao Feng
  • Long Liu
  • Xin-Ming Zhang
  • Zeng-Rong Wang
  • Pai Lu
  • Qiang SunEmail author
Original Paper
  • 57 Downloads

Abstract

The combination of high-capacity and long-term cyclability has always been regarded as the first priority for next-generation anode material for lithium-ion batteries (LIBs). To meet these requirements, in this work, the Ag-decorated pomegranate seed-like Fe3O4 anode was synthesized through a facile one-pot solvothermal method, without intervening of inert gas or any additional surfactants. The Ag nanocrystals uniformly decorated on the pomegranate seed-like Fe3O4 nanograins could significantly improve the rate capability and contribute to long-term cyclability. When used as anode for LIBs, the Ag-decorated Fe3O4 anode exhibited excellent cycling stability after 150 cycles with a high capacity of 550 mA h gcomposite−1 calculated on the composite at a current density of 0.5 C, corresponding to 696 mA h g−1 on the basis of Fe3O4. Furthermore, even at a very high current density of 2.0 C, the discharge-specific capacity remained as high as 390 mA h gcomposite−1.

Graphical abstract

Keywords

Silver Fe3O4 nanocrystal Nanocomposite Anode Lithium-ion batteries 

Notes

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding information

This work was financially supported by the National Natural Science Foundation of China (21503033), the Doctoral Scientific Research Foundation of Liaoning Province (201501178), and the Fundamental Research Funds for the Central Universities (N172504029).

Compliance with ethical standards

The authors declare that they have no competing interest.

Supplementary material

11581_2019_3000_MOESM1_ESM.doc (382 kb)
ESM 1 (DOC 382 kb)

References

  1. 1.
    Matthew L, Lu J, Chen ZW, Khalil A (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561CrossRefGoogle Scholar
  2. 2.
    Larcher D, Tarascon JM (2005) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRefGoogle Scholar
  3. 3.
    Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  4. 4.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  5. 5.
    Armstrong MJ, O’Dwyer C, Macklin WJ, Holmes JD (2014) Evaluating the performance of nanostructured materials as lithium-ion battery electrondes. Nono Res 7:1–62CrossRefGoogle Scholar
  6. 6.
    Zhang GQ, Wu HB, Hoster HE, Lou XW (2014) Strongly coupled carbon nanofiber-metal oxide coaxial nanocable with enhanced lithium storage properties. Energy Environ Sci 7:302–305CrossRefGoogle Scholar
  7. 7.
    Pasta M, Wessells CD, Huggins RA, Cui YA (2012) High-rate and long cycle life aqueous electrolyte battery for grid-scale. Energy Storage Nat Commun 3:1149Google Scholar
  8. 8.
    Cui Q, Zhong Y, Pan L, Zhang H, Yang Y, Liu D, Teng F, Bando Y, Yao J, Wang X (2018) Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies. Adv Sci 5:1700902CrossRefGoogle Scholar
  9. 9.
    Aravindan V, Lee YS, Madhavi S (2015) Research progress on negative electrodes for practical Li-ion batteries: beyond carbonaceous anodes. Adv Energy Mater 5:1402225CrossRefGoogle Scholar
  10. 10.
    Hu RZ, Ouyang YP, Liang T, Tang X, Yuan B, Liu J, Zhang L, Yang LC, Zhu M (2017) Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO2-Mn-graphite ternary anode. Energy Environ Sci 10:2017–2029CrossRefGoogle Scholar
  11. 11.
    Xu R, Wu SP, Du Y, Zhang ZA (2016) Facile route to dually protected Ge@GeO2 composites as anode materials for lithium ion battery. Chem Eng J 296:349–355CrossRefGoogle Scholar
  12. 12.
    Hernandez CR, Etiemble A, Douillard T, Mazouzi D, Karkar Z, Maire E, Guyomard D, Lestriez B, Roué LA (2017) Facile and very effective method to enhance the mechanical strength and the cyclability of Si-based electrodes for Li-ion batteries. Adv Energy Mater 7:1701787Google Scholar
  13. 13.
    Poizot P, Laruelle S, Grugeion S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRefGoogle Scholar
  14. 14.
    Reddy M, Subba RG, Chowdari B (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  15. 15.
    Cheng H, Lu ZG, Ma RG, Dong YC, Wang HE, Xi LJ (2012) Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. J Mater Chem 22:22692–22698CrossRefGoogle Scholar
  16. 16.
    Do JS, Weng CH (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sources 146:482–486CrossRefGoogle Scholar
  17. 17.
    Xiao L, Li EW, Yi JY, MengW WSY, Deng BH, Liu JP (2018) Enhancing the prformance of nanostructured ZnO as an anode material for lithium-ion batteries by polydopamine-derived carbon coating and confined crystallization. J Alloys Compd 764:545–554CrossRefGoogle Scholar
  18. 18.
    Bracamonte MV, Primo EN, Luque GL, Venosta L, Bercoff PG, Barracon DE (2017) Lithium dual uptake anode materials: crystalline Fe3O4 nanoparticles supported over graphite for lithium-ion batteries. Electrochim Acta 258:192–199CrossRefGoogle Scholar
  19. 19.
    Hao SM, Li QJ, Qu J, An F, Zhang YJ, Yu ZZ (2018) Neuron-inspired Fe3O4/conductive carbon filament network for high-speed and stable lithium storage. ACS Appl Mater Interfaces 10:17923–17932CrossRefGoogle Scholar
  20. 20.
    Ding RR, Zhang J, Qi J, Li ZH, Wang CY, Chen MM (2018) N-doped dual carbon-confined 3D architecture rGO/Fe3O4/AC nanocomposite for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10:13470–13478CrossRefGoogle Scholar
  21. 21.
    Alexey S, Benito RG, Marina S, Michael F, Luis ML (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17:3870–3876CrossRefGoogle Scholar
  22. 22.
    Liu J, Xu XJ, Hu RZ, Yang LC, Zhu M (2016) Uniform hierarchical Fe3O4@polypyrrole Nanocages for superior lithium ion bettery anodes. Adv Energy Mater 6:1600256CrossRefGoogle Scholar
  23. 23.
    Chen S, Wu Q, Wen M, Wu Q, Li J, Cui Y, Pinna N, Fan Y, Wu T (2018) Sea-sponge-like structure of nano-Fe3O4 on skeleton- C with long cycle life under high rate for Li-ion betteries. ACS Appl Mater Interfaces 10:19656–19663CrossRefGoogle Scholar
  24. 24.
    Yang Z, Wang J, Yao SW, Su DY, Liu S, Feng XX (2018) Composite of Fe3O4/MnCO3 as anodes for lithium-ion batteries. J Alloys Compd 757:112–117CrossRefGoogle Scholar
  25. 25.
    Wang YS, Li YY, Qiu Z,P, Wu XZ, Zhou P F, Zhou T, Zhao JP, Miao ZC, Zhou J, Zhuo SP (2018) Fe3O4@Ti3C2 hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J Mater Chem A 6: 11189-11197Google Scholar
  26. 26.
    Ma FX, Hu H, Wu HB, Xu CY, Xu Z, Zhen L, Lou XW (2015) Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 27:4097–4101CrossRefGoogle Scholar
  27. 27.
    Zuo Y, Wang G, Peng J, Li G, Ma Y, Yu F, Dai B, Guo X, Wong CP (2016) Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries. J Mater Chem A 4:2453–2460CrossRefGoogle Scholar
  28. 28.
    Liu J, Xu X, Hu R, Yang L, Zhu M (2016) Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes. Adv Energy Mater 6:1600256CrossRefGoogle Scholar
  29. 29.
    Zhang J, Wang K, Xu Q, Zhou Y, Cheng F, Guo S (2015) Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nano-particles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9:3369–3376CrossRefGoogle Scholar
  30. 30.
    Zhang W, Li X, Liang J, Tang K, Zhu Y, Qian Y (2016) One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries. Nanoscale 8:4733–4741CrossRefGoogle Scholar
  31. 31.
    Guo C, Wang L, Zhu Y, Wang D, Yang Q, Qian Y (2016) Fe3O4 nanoflakes in an N-doped carbon matrix as high-performance anodes for lithium ion batteries. Nanoscale 7:10123–10129CrossRefGoogle Scholar
  32. 32.
    Qu Q, Chen J, Li X, Gao T, Shao J, Zheng H (2015) Strongly coupled 1D sandwich-like C@Fe3O4@C coaxial nanotubes with ultrastable and high capacity for lithium-ion batteries. J Mater Chem A 3:18289–18295CrossRefGoogle Scholar
  33. 33.
    Jiao J, Qiu W, Tang J, Chen L, Jing L (2016) Synthesis of well-defined Fe3O4 nanorods/ N-doped graphene for lithium-ion batteries. Nano Res 9:1256–1266CrossRefGoogle Scholar
  34. 34.
    Jing L, Fu A, Li H, Liu J, Guo P, Wang Y, Zhao X (2014) One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Adv 4:59981–59989CrossRefGoogle Scholar
  35. 35.
    Goodenough JB (2018) How we made the Li-ion rechargeable battery. Nat Electron 1:204CrossRefGoogle Scholar
  36. 36.
    Sun Y, Tian Y, He M, Zhao Q, Chen C, Hu C, Liu Y (2012) Controlled synthesis of Fe3O4/Ag core-shell composite nanoparticles with high electrical conductivity. J Electron Mater 41:520–523Google Scholar
  37. 37.
    Liu YM, Chen BL, Cao F, Chan HL, Zhao XZ, Yuan JK (2011) One-pot synthesis of three-dimensional silver-embedded porous silicon micro-particles for lithium-ion batteries. J Mater Chem 21:17083–17086CrossRefGoogle Scholar
  38. 38.
    Kim C, Jung JW, Yoon KR, Youn DY, Park S, Kim ID (2016) A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 10:11317–11326CrossRefGoogle Scholar
  39. 39.
    Zou M, Li J, Wen WW, Chen L, Guan L, Lai H, Huang Z (2014) Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries. J Power Sources 270:468–474CrossRefGoogle Scholar
  40. 40.
    Hao Q, Wang ZH, Ye JJ, Xu CX (2017) Fe3O4/Ag microsheets assembled by interlaced nanothorns as high performance anode materials for lithium storage. Int J Hydrog Energy 42:10072–10080CrossRefGoogle Scholar
  41. 41.
    Geng H, Ge D, Lu S, Wang J, Ye Z, Yang Y, Zheng J, Gu H (2015) Preparation of a γ-Fe2O3/Ag nanowire coaxial nanocable for high-performance lithium-ion batteries. Chem Eur J 21:11129–11133CrossRefGoogle Scholar
  42. 42.
    Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785CrossRefGoogle Scholar
  43. 43.
    Wang Y, Chen L, Liu H, Xiong Z, Zhao L, Liu S, Huang C, Zhao Y (2019) Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chem Eng J 356:746–755CrossRefGoogle Scholar
  44. 44.
    Jeong JM, Lee KG, Chang SJ, Kim JW, Han YK, Lee SJ, Choi BG (2015) Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries. Nanoscale 7:324–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xue Zhang
    • 1
  • Zhong-Bao Feng
    • 1
  • Long Liu
    • 1
  • Xin-Ming Zhang
    • 1
  • Zeng-Rong Wang
    • 1
  • Pai Lu
    • 1
  • Qiang Sun
    • 1
    Email author
  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations